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Abstract

Human identification has played a prominent role in forensic science for the

past three decades with identification based on unique genetic traits driving

the field. However, this may have limitations, for instance, for twins or samples

with low quality and/or low quantity of DNA. Therefore, there is need for a new

technique of human identification which can exploit these samples. Moreover,

high-throughput sequencing techniques are now available which may provide

an unpreviously high amount of data likely useful in forensic science.

This thesis investigates the potential for bacteria found in the salivary mi-

crobiome to be used to differentiate individuals. Two different targets (16S

rRNA and rpoB) were chosen to maximise coverage of the salivary microbiome

and when combined, they increase the power of differentiation (identification).

Paired-end Illumina high-throughput sequencing was used to analyse the bac-

terial composition of saliva from two different people at four different time

points (t1=0 and t2=28 days and then one year later at t3=365 and t4=393

days). Five major phyla dominate the samples: Firmicutes, Proteobacteria,

Actinobacteria, Bacteroidetes and Fusobacteria. Streptococcus, a firmicute, is

one of the most abundant aerobic genera found in saliva and targeting Strepto-

coccus rpoB has enabled a deeper characterisation of the different streptococci

species, which cannot be differentiated using 16S rRNA alone. We have ob-

served that samples from the same person group together regardless of time

of sampling. The results indicate that it is possible to distinguish two people

using the bacterial microbiota present in their saliva.

This is the first study to investigate the analysis of the salivary microbiome

for forensic purposes, previous studies were limited to analysing only strepto-

cocci species from saliva. Secondly, this thesis demonstrates the advantages of

targeting two genes and not using only the ‘gold standard’ gene, 16S rRNA,

for bacterial community analysis.



Resumé

L’identification humaine a joué un rôle de premier plan dans les sciences crim-

inelles ces trois dernières décennies, en se focalisant principalement sur les traits

génétiques dits ’uniques’. Cependant, une telle approche présente des limites,

comme dans les cas où il faut identifier des jumeaux ou analyser des échantillons

ayant une faible qualité et/ou une faible quantité d’ADN. Pour exploiter ces

types d’échantillons, une nouvelle méthode d’identification est explorée, dans

le cadre de la présente recherche, en se basant sur les techniques de séquenage

à haut débit, pouvant fournir une quantité élevée de données potentiellement

utiles pour les sciences criminelles.

Cette thèse étudie des bactéries présentes dans le microbiome salivaire et leur

potentiel de différenciation entre individus. Deux cibles différentes (16S ARNr

et rpoB) ont été choisies pour maximiser la couverture des caractéristiques du

microbiome salivaire, augmentant ainsi le pouvoir de différenciation (identifi-

cation) par leur combinaison dans l’analyse. Le séquenage à haut debit de Illu-

mina de type ’paired-end a été utilisé pour analyser la composition bactérienne

de la salive de deux personnes différentes à quatre temps différents (t1 = 0 et

t2 = 28 jours, puis un an plus tard à t3 = 0 et t4 = 28 jours). Suite aux

analyses, cinq phylums majeurs ressortent comme étant dominants dans les

échantillons testés: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes

et Fusobacteria. Streptococcus; un firmicute, est l’un des genres aérobiques

les plus abondants dans la salive. Le ciblage Streptococcus rpoB a permis

une caractérisation plus approfondie des différentes espèces de streptocoques,

lesquelles ne peuvent être différenciées qu’en utilisant uniquement le séquenage

du gène 16S ARNr. Les résultats finaux indiquent qu’il est possible de car-

actériser deux personnes en utilisant le microbiote bactérien présent dans leur

salive et ceci indépendamment du moment collecte de l’échantillon.

Cette recherche représente la première étude focalisée sur l’analyse du micro-

biome salivaire à des fins forensiques; les études antérieures se limitaient à

la seule analyse des espèces de streptocoques dans la salive. Cette recherche

observe qu’il est plus avantageux de cibler deux gènes pour l’analyse de la



communauté bactérienne, plutôt que de se focaliser uniquement sur le gène dit

standard 16S ARNr.



To Steven
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Introduction

Current methods of human identification in forensic science rely heavily upon the analysis

of human DNA. This has proven to be very successful often yielding full DNA profiles,

which can then be compared to DNA databases for individual selection. However, there

have been many cases where analysing human DNA has proven difficult. One major

problem is contact DNA which occurs when a persons skin comes into contact with another

person or an object either accidentally or deliberately. Two scenarios arise whereby the

host can react with the transferred DNA or upon analysis the DNA profile of the host

could interfere and prevent a determination of the donor’s DNA profile. In the first case,

bacteria and enzymes found on skin can aid the degradation of DNA making profiling more

difficult. In the second case, the amount of human DNA transferred is low(0-225pg/µl) (1)

therefore, the host’s DNA can dominate, yielding either a mixed or unexploitable profile

and the extraction process is more demanding. Low template techniques are designed

to overcome this through the use of stricter DNA extraction protocols and a greater

number of PCR cycles. These techniques have been scrutinised for their reliability and

accuracy (2, 3, 4, 5). An independent review commissioned in the United Kingdom by the

Home Office Regulation Unit states that low template DNA analysis “has been validated

in accordance with scientific principles” (3). However, these techniques are still only

accepted on the same terms as standard DNA typing in courts in the UK, New York1

and New Zealand and have been used in trial evidence in Australia and Sweden (6).

The issue of low DNA quantity will continue to persist in forensic science regardless of

the target/technique used. This is due to a number of problems; risk of contamination,

mixture analysis and transfer through mechanisms other than those associated with the

1This technique has only been accepted in New York and not the whole of the USA.

1
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crime in question. Therefore, the technique I propose aims to concentrate on the problem

of degraded DNA samples.

An extension of these problems occurs with the transfer of saliva through either spitting,

licking, kissing or biting to skin. In this case both the quantity and quality of the transfer

are low, often rendering no result. This is in part due to enzymes in saliva breaking down

human DNA, as described above for contact DNA. However, as bacteria can thrive in

this environment (7), due to their increased protection from degradation, they can also

be sequenced and thus have the potential for identification. A new technique is therefore

required to exploit these types of samples. I proposed investigating the composition of

bacteria, known as the microbiome, found in saliva by analysing bacterial DNA with the

aim of producing an innovative, robust, alternate identification method.

This technique could be important for offering results or potential agressors in sexual

assault investigations, as kissing, biting, licking and spitting are often encountered. Sexual

assault cases rarely result in a conviction due to either lack of evidence or women being

too scared to prosecute1 (8). In those cases, the main form of evidence derives from DNA

found in sperm; however, if no sperm is left behind or a person was sexually assaulted but

not raped then it is very difficult to support that an assault has occurred. A recent report

(9) shows that in the UK the number of cases being referred to the Crown Prosecution

Service (CPS) has dropped despite an increase in the number of rapes reported to the

police. If this technique is successful and well communicated to the general public then

victims maybe more willing to report the sexual assault and the police more likely to refer

it to the CPS2.

1.1 Human Identification

The ability to (probabilistically) identify a person through the analysis of their DNA be-

came possible in the 1980’s due to two independent breakthroughs. The first, Alec Jeffreys

discovered a method for human identification through DNA - Restriction Fragment Length

Polymorphism (RFLP), a technique subsequently referred to as DNA fingerprinting (10).

The second, Kary Mullis discovered the Polymerase Chain Reaction (PCR) a technique

used to amplify specific regions of DNA (11). Combined, these two techniques proved

revolutionary for human identification and forensic science. DNA fingerprinting was dis-

covered in 1984 and the first conviction using this technique occurred just three years

1Statistics from the UK show that the rate of conviction for rape cases is 6 percent.
2This criminological aspect is very interesting however, it is outside the scope of the current research.
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later (12). In 1989 in the USA a case used DNA evidence to overturn the conviction. This

shows the power DNA evidence had in Court.

With advances in technology two new breakthroughs, in the late 80’s to early 90’s, changed

the techniques used for DNA analysis. The first, a new marker for DNA analysis, the

micro-satellite or Short Tandem Repeat (STR) (13). The second, a new method of vi-

sualisation based on fluorescent labelling which when combined with PCR increased the

sensitivity of the technique enabling low quantities of DNA to be analysed (13). Gradually

in the past decade this technique has evolved from four STR markers to seventeen and

more, with increased sensitivity. However this analytical technique still has its limitations,

such as analysing degraded DNA, therefore there is need for a new technique which can

exploit these limitations and can focus on different genomes.

1.2 Concept of the human microbiome

A microbiome comprises the genomes of the bacteria found at a specific site. Specifically,

the human microbiome describes all the individual microbiota found within and across

the human body (14). With bacterial cells outnumbering somatic and germ line cells by a

factor of ten their contribution to human life should not be underestimated. Furthermore,

it is thought that a human should be viewed as a combination of microbial and human

cells (14). Each distinct area of the human body, for example; the oral cavity, forearm,

hand and gut have their own individual microbiome. Each microbiome consists of different

combinations of bacteria, with, in theory, each person having a slightly different ratio or

combination of bacteria at each site.

The phylogenies of bacteria have been studied for many years, however, the depth of

analysis now available has shown that the level of microbial diversity has been greatly

underestimated. This has lead many scientists to investigate the level of diversity within

a species (15, 16). Tettelin et al. (16) proposed the concept of the pan-genome, within

which all the genomes of one species are contained. The pan-genome can be divided

into three distinct sections: 1) core genome - shared by all strains, 2) set of dispensable

genes - shared by some isolates and 3) set of strain-specific genes - unique to each isolate,

highlighting that the microbiome must differ within species as well as between species. A

study by Hiller et al. (17) of 17 Streptococcus pneumoniae genomes has shown that the

core-genome consists of 1454 genes whereas the pan-genome contains approximately 5000

genes. Hiller et al. (17) conclude that 142 genomes would need to be sequenced in order

to have the complete S. pneumoniae genome. Therefore, this demonstrates that it is not
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possible to characterise a species from a single genomic sequence (18). With the arrival

of high-throughput sequencing many species can now be analysed at the same time, to an

adequate depth for characterisation. Moreover, the differences within and between species

can now be exploited for the purpose of forensic science.

1.3 Aims

The goal of this thesis is to produce a method for analysing the salivary microbiome

for the purpose of human characterisation. As mentioned above the analysis of human

microbiomes has already been undertaken by other domains, namely medicine. However,

their goals are different as they aim to either characterise the microbiota present and/or

find which bacteria cause disease. Whereas, the aim of this study is to find out which

bacteria or combination of are potentially unique to a person. The following aims are

proposed to address this problem and they are approached in this research:

1. Develop a method for analysing the salivary microbiome.

• Selection of sampling method;

• Selection of extraction method;

• Selection of targets and optimisation of primers;

• Selection of sequencing method;

• Selection and optimisation of sequence processing programs.

2. Analyse the salivary microbiome of two individuals.

• What bacteria are present?;

• What are the most abundant bacteria and why?

3. Analyse the differentiation of individuals through analysis of their salivary micro-

biome.

• How to compare individuals?;

• How to combine target genes?;

• What is the minimum number of sequences required for differentiation?
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1.4 Relationship of the proposed work to existing literature

and its originality

At a laboratory level, high-throughput sequencing techniques have only been developed

over the past few years and therefore are still in their infancy. This has lead many groups

to try to understand and improve the different analytical methods (19, 20, 21, 22, 23, 24).

During this time these techniques have come to the forefront of many domains of biological

research. Many researchers have used this technique to investigate the bacterial diversity

in different environmental communities and habitats on the human body (14, 25, 26, 27,

28, 29). For saliva, the emphasis has been in the medical environment, notably on oral

diseases, essentially in how different bacteria can cause different diseases and whether the

detection of certain bacteria can be used as a diagnostic tool (30, 31, 32, 33, 34, 35, 36).

However, there are very few articles linking these techniques with forensic science and its

(forensic) value has not yet been established. In the domain of forensic science, Fierer

et al. (37) investigated the use of bacteria for human identification concentrating on the

potential of analysing skin bacterial communities. They suggested that the bacteria left

behind after touching a surface could be used to identify the person. These results are

promising, indicating that it could be possible to use microbiome analysis for forensic

identification. However, the use of bacteria found in saliva for human identification has

only been investigated in relation to bite-mark analysis, more specifically the analysis of

streptococcal DNA (38, 39, 40, 41). This paves the way for a complete technique for

human identification based on bacteria found in saliva.

In summary, high-throughput sequencing techniques are still being developed and im-

proved and human identification methods rely heavily on human DNA. Therefore, there

is the market for a new method for human identification in forensic science which can

exploit where human DNA fails. This thesis explores whether the analysis of the salivary

microbiome can be used to differentiate two individuals and therefore, be a potential new

method for human identification.

1.5 Content

To respond to the aims exposed above this thesis will be laid out as follows: first the

background to saliva and it’s use will be presented followed by the materials and methods

which will explain all techniques used. Next, the results concerning each of the three

principle aims will be presented in individual chapters, followed by a discussion chapter
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which will discuss each aim separately and then bring everything together presenting a

global discussion of the problem and solution.
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Background

This chapter will introduce saliva, describing it’s bacterial composition and the stability

and variability of the bacteria. The concept of metagenomics will also be presented.

2.1 Saliva

Saliva is the fluid tissue, found in the mouth of humans and other animals, which is pro-

duced and secreted by the salivary glands. Glantz (42) describes saliva as a fluid tissue,

not just a solution, which can be divided into four levels of organisation: 1. continuous

phase of electrolytes in water 2. a scaffold-like network structure 3. less water-soluble

proteins and salivary micelles contained in the network filaments 4. lipoid material, bac-

terial and epithelial cells. 99.5% of human saliva is water whilst the remaining 0.5%

contains many enzymes including α-amylase and lingual lipase, antibacterial compounds

such as lysozyme and lactoferrin, electrolytes including sodium and potassium and mucus

which contains mucopolysaccharides and glycoproteins. The different concentrations of

electrolytes makes saliva a hypotonic solution (43). Saliva has many functions: it wets

food to help swallowing, enzymes in saliva initiate digestion, it helps tasting by wetting

the tongue aiding it to differentiate between flavours and washing of saliva over teeth helps

keep them clean and protected from bacteria that cause decay.

Estimates show that on average a healthy human being will produce between 0.5 and 1.5

litres (L) of saliva per day (43). Saliva is specifically produced by the contra-lateral major

glands and the minor salivary glands. The different glands vary in the types of secretions

produced, these differences are due to the ratio of serous to glandular cells (44). Serous

cells produce a watery fluid and the secretion of which is strongly activated by stimuli
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2. BACKGROUND

whereas mucous cells produce a mucus-rich fluid. Other factors contribute to the compo-

sition of whole saliva including; blood, oral tissues and microorganisms (45, 46). Many

factors influence the amount and composition of secreted human saliva; circadian rhythm

(47), flow rate, type and size of salivary gland (48), duration and type of stimulus, diet,

drugs, age, gender and blood type (49). With such a large variation in the composition of

saliva a standardised method for collection is needed to minimise, as much as possible, any

differences. Using a non-standardised method can result in high-variability in obtained

data. When analysing whole saliva three factors need to be taken into account. Primarily,

saliva contains components which originate from cells and bacteria therefore it can be

difficult to determine which parts truly come from saliva. Secondly, over time bacterial

metabolism changes the composition of saliva. Finally, cellular debris can inhibit some an-

alytical techniques. These three factors can be dealt with through pre-treatment of whole

saliva, for example, centrifugation and correct storage. However, this can also cause the

composition of saliva to change. Centrifugation minimises bacterial action, however for

this project the main focus is to investigate the bacteria found in saliva therefore centrifu-

gation would not be appropriate. Saliva is inhomogeneous as it can simultaneously consist

of liquid, gas and gel phases a property which can subsequently affect the reliability of

measurements (50). To prevent changes in the number and proportion of bacteria present

in saliva, samples should be handled in the cold with minimal time between collection

and analysis. When analysing α-amylase the storage of the sample is very important as

at +4◦C the enzyme remains stable for a few days, however, if frozen the protein can

precipitate (51). When analysing the data all of the above factors need to be taken into

consideration.

Saliva is useful to forensic scientists for many reasons: it is easy to sample and less invasive

than sampling blood or urine, traces of drugs can be detected and the levels of α-amylase

are exploited in presumptive tests for saliva.

2.1.1 Bacteria

Saliva has its own microbiome consisting of specific bacteria and as many as 500 million

bacterial cells can be found in one millilitre (mL) of saliva. It has been shown there are at

least 700 bacterial species found in the mouth (52). One of the principle functions of saliva

is to wet the mouth and therefore, saliva covers all surfaces found in the mouth except

for deep cracks and periodontal pockets (34, 53). The oral cavity is the ideal habitat

for aerobic and especially anaerobic bacteria thanks to a constantly high temperature,

humidity and the regular arrival of food (54). The oral cavity contains two distinct surface
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types; teeth which have a solid, mineralised and irregular surface and mucosal membranes

such as gums and the tongue which are soft, stratified and regularly moult epithelial cells.

Due to these differences, both surfaces are colonised by different bacteria and/or different

concentrations of bacteria (30, 55). The bacteria colonising these surfaces form biofilms,

which consist of layers of different bacteria (30, 34). In actual fact, the bacteria found

in saliva come from the oral cavity or external sources. Specifically, Marsh and Martin

state that the majority of bacteria in saliva comes from the tongue (56) and Hamilton and

Bowden state that the concentration of certain bacteria in saliva reflects their respective

concentration in dental plaque (53). The most commonly found bacteria (by both culture

and sequencing) in the oral cavity and saliva will be presented below.

2.1.1.1 Gram-positive1 cocci

Streptococcus is the most commonly found genus in the oral cavity and has been isolated

from all oral sites (57). The genus Streptococcus is separated into four groups: mutans,

salivarius, anginosus and mitis (41). From the mutans group S. mutans and S. sobrinus are

the most common along with S. criceti and S. ratti. These species have specifically been

found attached to teeth. The salivarius group contains S. salivarius, S. thermophilus and

S. vestibularis all of which have been found on all surfaces of the oral cavity but they prefer

to colonise mucosal membranes, specifically the tongue. The anginosus group contains S.

constellatus, S. intermedius and S. anginosus all of which have been isolated from dental

plaque and mucosal membranes. The final group contains many species including S. mitis,

S. oralis and S. sanguinis. The first two are amongst the most commonly found bacteria

in the oral cavity. Studies have shown that all three are initial colonisers of teeth with

S. mitis being the most predominant (58, 59). Furthermore, previous studies have also

shown that humans have many different strains of the same Streptococcus species with

many strains being unique to individuals (60, 61).

Other Gram-positive cocci found in the oral cavity are Granulicatella adiacens, a bacterium

which colonises all oral surfaces, Abiotrophia defectiva and other species from the genus

Gemella. It is also possible to detect Peptostreptococcus stomati and more rarely species

from the genus Enterococcus of which the commonly detected is Enterococcus faecalis.

Species from the genera Staphylococcus and Micrococcus are rarely isolated from the oral

cavity despite their abundances in neighbouring sites such as the skin and nasal mucosal

membranes (62).

1Bacteria which colour blue-violet after application of Gram staining are classified as Gram-positive
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2.1.1.2 Gram-positive bacilli

Species of the genus Actinomyces form a large portion of the dental plaque microbiome.

Of the numerous Actinomyces species A. naeslundii and A. oris are the most common. A

number of other genera including Eubacterium, Mogibacterium, Pseudoramibacter, Slackia,

Cryptobacterium, Shuttleworthia, Solobacterium and Bulleidia have been detected in the

buccal microbiome, however they are more commonly associated with peridontal dis-

eases.

The genus Lactobacillus is often found in the oral cavity. However, it constitutes less

than 1% of the cultivable oral microbiota. Other bacteria found include Propionibacte-

ria, which are obligate anaerobes, Corybacterium matruchotti, Rothia dentocariosa and

Bifibacterium dentium which are often isolated from dental plaque. Along with Rothia

dentocariosa, B. dentium is also isolated from the tongue. Furthermore, species from

the genera Arcanobacterium and Actinobaculum along with Alloscardovia omnicolens also

inhabit the oral cavity (62).

2.1.1.3 Gram-negative1 cocci

The genus Neisseria which consists of both facultative aerobic and anaerobic cocci is

found in nearly all oral sites in low quantities. The most common species found are N.

subflava, N. mucosa, N. flavescens and N. pharyngis. Species of the genus Veillonella,

which are strict anaerobes, including V. parvula, V. dispar, V. atypica, V. denticariosi

and V. rogosae constitute an important part of the oral microbiome. Another anaerobe

Megasphaera is occasionally detected in dental plaque (62).

2.1.1.4 Gram-negative bacilli

The majority of Gram-negative bacilli are found in dental plaque, for example, Haemophilus

parainfluenzae, the only species of the genus Haemophilus to have been detected in the

oral cavity. Other examples of facultative anaerobes found in the oral cavity are species

from the genus Capnocytophaga. Also found is Kingella oralis, a coccobacillus found in

many sites throughout the mouth, Aggregatibacter actinomycetemcomitans and species

from the genus Simonsiella which colonise the epithelial layer of the buccal cavity and

Eikenella (62).

1Bacteria which colour red or pink after application of Gram staining are classified as Gram-negative
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A large part of the bacterial flora found in dental plaque and on the tongue are obligate

anaerobes, of which the most prevalent come from the genera Prevotella and Porphy-

romonas. Another important obligate anaerobe is Fusobacterium. Leptorichia buccalis has

also been detected along with species from the genera Campylobacter and Selenomonas.

Other species from the following genera Centipeda, Johnsonella, Catonella have been iso-

lated but only from individuals with an oral disease. Furthermore, species from the genera

Dialister, Flavobacterium, Tannerella, Desulfomicrobium, Desulfovibrio and Methanobre-

vibacter have been detected along with oral spirochaetes which are classified under the

genus Treponema (62).

2.1.1.5 Mycoplasma

Mycoplasma is a genus of bacteria which have no cell wall and therefore cannot be classed

as either Gram-negative or Gram-positive. Between 6 and 32% of the population carry

this genus which includes species such as, Mycoplasma buccale, M. orale, M. pneumoniae,

M. salivarium and M. hominis. Specifically, the last three have been found in human

saliva (56).

2.1.1.6 Bacterial interactions

Having presented which species are found in saliva, it is worth noting that certain genera

have been shown to be positively correlated (63). Specifically, Li et al. demonstrated that

the following genus pairs were positively correlated: Fusobacterium/Porphyromonas, Fu-

sobacterium/Prevotella, Prevotella/Veillonella, Streptococcus/Actinomyces and Veillonel-

la/Actinomyces. These correlations correspond with the spatio-temporal model of oral

bacterial colonisation (64, 65). They also found that genera from the same phylum tended

to correlate positively with each other, especially for Proteobacteria and Firmicutes, the

two most popular phyla in saliva. In another study (66) co-occurrence of bacteria was

investigated, showing that the highly abundant genera such as Streptococcus, Neisseria

and Haemophilus are always found together, whereas other genera, such as, Abiotrophia

and Dialister are unlikely to be found together. When comparing taxa within a single

phylum they found that only taxa within Firmicutes scored highly suggesting segregation

of species and possible competitive species interactions. This is interesting as Streptococ-

cus is the most abundant genus found in saliva and belongs to Firmicutes, indicating that

different people may have different Streptococcus species due to this interaction. Bacterial

interactions could have an impact on the interpretation of data as each bacterium does
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not have the same chance of being present, so the data may have to be interpreted as a

whole and not species by species.

2.1.1.7 Variability

It is evident that all the different bacteria presented above are not found in everybody.

This is mainly due to different lifestyle habits of individuals, for example, smokers will

have some bacteria that non-smokers do not have (see section 7.4.3 for more details). Fur-

thermore, the abundances of bacteria will vary, especially through neglected oral hygiene

and periodontal diseases (32, 67, 68, 69). Nevertheless, it has been possible to define the

genera most commonly found in the oral cavity and present in everybody as: Strepto-

coccus, Neisseria, Haemophilus, Campylobacter, Veillonella, Fusobacterium, Rothia, Acti-

nomyces, Prevotella, Corynebacterium, Capnocytophaga, Atopobium, Granulicatella and

Bergeyella of which the most abundant are Streptococcus, Prevotella, Veillonella, Neisse-

ria, Haemophilus and Rothia (66). Specifically the salivary microbiome consists of eight

genera which account for more than 70% of the population: Streptococcus, Prevotella,

Veillonella, Neisseria, Haemophilus, Rothia, Porphyromonas and Fusobacterium (70). In

addition, Nasidze et al. (70) showed the number of genera per individual ranged from six

to thirty.

There are two types of variability; the variability between different individuals (inter-

individual variability) and the variability within the same individual (intra-individual vari-

ability). For this idea to progress the intra-individual variability needed to be small and

the inter-individual variability as large as possible. Due to the dynamic nature of the sali-

vary microbiome individual variability is extremely likely. A study by Nasidze et al. (70)

investigated the global diversity of the human salivary microbiome. They observed that

the level of variation was significantly higher between individuals than within the same

individual. Specifically, about 13.5% of variation in the distribution of genera was due to

differences between individuals. In addition, they found that sequencing 120 clones from

each individual was sufficient for analysing variation at the genus level. Another study by

Zaura et al. (31) has shown that when comparing the oral microbiome of three different

people 11-20% of the sequence-reads corresponded to unique sequences which were not

shared. Furthermore, Bik et al. analysed the bacterial diversity in the oral cavity of ten

healthy individuals and demonstrated that large inter-individual differences were present

(66).

Further studies have shown microbial communities to be highly variable within and be-

tween people. However, for this thesis, it was essential to find out whether the variabil-
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ity within a person was significantly lower than the variability between different people.

Costello et al. (26) undertook an experiment which investigated ‘bacterial community

variation in human body habitats across space and time’. They analysed variable region

2 (V2) of the bacterial 16S ribosomal RNA encoding gene. Their results showed the range

of bacteria found in the oral cavity was significantly less variable both within and between

people. This could be partly due to the method of analysis as Streptococcus is one of

the most common bacteria found in the mouth, is very abundant and the technique used

might not have been accurate enough to separate all the different Streptococcus species.

However, the results showed the size of the ‘core’ bacteria, the bacteria common to every

individual, is likely to be larger in the oral cavity than, for example, skin. Subsequently,

the oral microbiome differed the most from the skin microbiome. They also showed that

when a forearm was inoculated with tongue bacteria the transferred bacteria were more

similar to the tongue bacteria than the forearm bacteria. These two factors will be very

important when investigating the transfer of saliva to the forearm (26).

2.1.1.8 Stability

The stability of the salivary microbiome is of utmost importance. The advancement of

this project depended on demonstrating the stability of the salivary microbiome over

time. The salivary microbiome needs to be stable enough for samples from the same

person to group together. If this was not the case then the technique proposed could

not be used as a means of identification. Firstly, unlike fully internal microbiomes, the

salivary microbiome regularly comes into contact with the external environment through

talking, breathing and eating, thus producing a dynamic microbiome (52). The following

question was subsequently raised; does each individual create their own dynamic but stable

microbiome? Costello et al. (26) concluded that each microbiome remains relatively stable

over time and Lazarevic et al. demonstrated that the salivary microbiome is stable over

one month (71).

It has been shown that the composition of oral bacterial microflora changes with age.

At birth the oral cavity is sterile however, after six hours bacterial colonisation starts

with species from Streptococcus (including S. pneumoniae), Micrococcus, Enterococcus,

Staphylococcus, Veillonella and many others. The most commonly found species in in-

fants is Streptococcus salivarius which mainly colonises the tongue. As teeth start to push

through new species can proliferate and dental plaque starts to form with the colonisa-

tion of Actinomyces and diverse Streptococci species (72, 73). From the age of five, the

composition of the oral microflora is comparable to that of an adult with the exception of
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Spirochaetes and Prevotella melaninogenica, which are often absent (53). From here on,

little change is observed in the oral microbiome, however if teeth are lost then a marked re-

duction in Spirochaetes, Lactobacillus, Streptococcus mutans and Streptococcus sanguis has

been observed (72). Stahringer et al. showed that between the ages of 12-24 Streptococcus

and Actinomyces increased with age and Veillonella decreased with age (74). However,

an in depth study over a long time period, concentrating on adult saliva, is required to

ascertain the stability of the salivary microbiome and whether it is stable enough for use

in forensic science.

2.1.1.9 Persistence

Bacteria in saliva could persist for longer than human DNA because bacterial DNA is

better protected than human DNA for two main reasons: 1. bacteria are prokaryotes and

prokaryotic cells have a cell wall which protects the cell (75), whereas animal eukaryotic

cells only have a cell membrane 2. in general, prokaryotic DNA is circular making it

harder to break down whereas animal DNA is linear and can be more easily attacked at

each end. This demonstrates a distinct advantage of bacterial DNA. Traces at crime scenes

are often found in sub-optimal conditions, meaning that they are quite quickly subject to

degradation. As bacterial DNA is innately better protected than human DNA it should

provide a more robust target for forensic analysis. Therefore, persistence can be viewed

as even more important than stability.

2.2 Metagenomics

Metagenomics is a new domain to have stemmed from novel technologies such as high-

throughput sequencing. Metagenomics is the study of the genomes of all the organisms in

a particular environment which, investigates the environment as a whole and includes all

types of analysis from sequence-based to product or function based methods. The Human

Microbiome Project (HMP), an extension of the Human Genome Project, consists of a

number of metagenomics projects including studies on the oral cavity (30, 31, 52). The aim

of the project is to characterise the human microbiome, including trying to understand the

factors which influence the distribution and evolution of the bacteria, in order to see the

effect the bacteria have on health and pre-disposition to various diseases (14). All of the

data produced by these projects is uploaded into freely available databases, for example, at

www.hmpdacc.org where currently around 3000 bacterial genome sequences are available.

Most medically relevant human microbiomes have been analysed, for example, the gut
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and the oral cavity. However, metagenomics is in its infancy, as are the techniques used,

therefore there is still a lot of room for exploration. A study has shown that most of

the bacteria found in the gut are rare, making them difficult to detect (76). If these rare

bacteria are important then the level of characterisation of the microbiome needs to be

very deep. If a similar pattern is seen in the salivary microbiome then more detail will

be required from each sample to get an accurate representation of an individual’s salivary

microbiome. Caporaso et al. (77) investigated different human microbiomes, including

the tongue, at a depth of millions of sequences per sample. Upon sub-sampling the data

they found that only 2000 sequences were required to represent the same relationships

found using the whole dataset. This shows that, in fact, very few sequences may be

required to describe a specific human microbiome. However, it is important to elucidate the

minimum number of sequences required to accurately characterise the salivary microbiome

for forensic purposes, as more sequences may be required to differentiate two individuals.

One way to characterise a microbiome at greater depth is to sequence more than one gene

fragment in order to obtain better coverage of the microbiome. A second option could be

to perform shotgun sequencing. Furthermore, if the diversity is high then a large number

of sequences would still be required to attain the necessary coverage (78). As proposed in

section 1.3, this thesis aims to work out how many sequences are required to differentiate

two individuals.
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3

Materials & methods

This chapter deals with the materials and methods used from the sampling of saliva

through to the processing and analysis of the sequencing data. Statistical methods used

to interpret the data are also briefly presented.

3.1 Sampling

The exploratory nature of this thesis meant that healthy individuals were used to limit

the effects of any additional factors such as the use of antibiotics or smoking. Due to the

cost of analysis only two individuals, a male and a female, were sampled. At the outset

of this project the allocated budget was 16,000CHF which was sufficient to undertake one

experiment (4 samples) however, by the time the first experiment was performed the cost

of analysis had halved enabling the second experiment to be performed within the same

budget. The chosen individuals were asked to brush their teeth in the morning and then

not consume any food for one hour prior to sample collection. Saliva was collected by

spitting into a sterile tube. Samples were stored at −20 ◦C until analysis to avoid any

change in the bacterial flora. If samples are stored at 4 ◦C they need to be processed

within 24 hours. Samples were taken at four time points t1=0, t2=28 days and one year

later at t3=0 and t4=28 days. Saliva was sampled as the pure fluid to provide the best

characterisation possible.

17



3. MATERIALS & METHODS

3.2 DNA extraction and amplification

To analyse the bacterial composition of the salivary microbiome first the bacterial DNA

was extracted. In order to standardise the extraction process and eliminate as much

contamination as possible the MagNA Pure 96 DNA extraction system was used. This

system uses the MagNA Pure Magnetic Glass Particle Technology, the main steps are as

follows (79) :

1. Sample material lysed releasing nucleic acids and nucleases denatured.

2. Due to the chaotropic salt conditions and high ionic strength of the lysis/binding

buffer the nucleic acids bind to the silica surface of the added magnetic glass particles

(MGPs).

3. Nucleic acid bound MGPs are magnetically separated from the residual lysed sample.

4. Several washing steps used to remove unbound substances (e.g. PCR inhibitors)

5. Purified nucleic acids are eluted from the MGPs.

All samples were extracted using the above technique specifically using the MagNA Pure

96 DNA and viral nucleic acid small volume kit following the pathogen universal 200 v2.0

protocol (79) and then specific targets described below were amplified using the polymerase

chain reaction (PCR).

3.2.1 Targets

The choice of target for high-throughput sequencing is very important as different targets

result in different depths of sequencing. Currently most published results are derived

from sequencing one or more of the variable regions of the 16S rRNA gene including V2,

V4 and V6 (see Figure 3.1). As shown in Figure 3.1, the 16S rRNA gene is composed

of nine conserved and hypervariable regions. The hypervariable regions are exploited

for taxonomy and the conserved regions are used for primer binding. The conserved

regions are called such as they are conserved across nearly all species of bacteria enabling

the use of universal primers to amplify the hypervariable region(s) of almost all bacteria

simultaneously. The 16S rRNA gene is highly conserved as it is essential for bacterial life.

It has a structural role in which it provides a scaffold which defines the position of the

ribosomal protein. In addition it stabilises correct codon-anticodon pairing in the A site

along with initiation of protein synthesis. Regions V2 and V4 have been shown to give the

lowest error rates when assigning taxonomy (80) and can be used for community clustering
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3.2 DNA extraction and amplification

(81). Primer design is another important step which can influence results (80, 82). Over-

or under-representation of specific taxa can be caused by primer bias along with some

taxa being missed completely (83). A recent study by Lazarevic et al. (84) explored the

use of Illumina sequencing technology for a metagenomic study of the oral microbiota.

They targeted the V5 hypervariable region of 16S rRNA which is smaller than some of the

other hypervariable regions of 16S rRNA. They found there were a number of advantages

to targeting a smaller region, including; a reduction in the chance of producing chimera

and an increase in the probability of detecting low-abundance taxa. Liu et al. (81)

demonstrated that with carefully chosen primers short sequences can yield equally as

accurate microbial community analysis as longer sequences. Due to the use of different

primers by different groups direct comparison of data between studies is difficult and

caution should be taken.

Figure 3.1: Schematic representation of 16S rRNA gene highlighting the con-
served and hypervariable regions.

There are limitations to using 16S rRNA; some organisms have polymorphisms in the

primer binding region and therefore these species are either poorly detected or completely

lost during amplification (85). It is also poor at resolving sub-populations within species;

as it is based on a single locus it lacks the necessary resolution (86). Many bacterial

genomes contain multiple copies of 16S rRNA and the number of copies varies between

species and can even vary within the same species (87), therefore it is difficult to make

accurate abundance estimates. Other studies have shown that using a housekeeping gene

such as rpoB, an RNA polymerase, can give better depth of analysis. Thus, sequences

which cannot be separated using the 16S rRNA gene can be separated by rpoB, giving a

better idea of the composition of a particular microbiome. rpoB tends to occur in single

copy making it ideal for abundance estimates (88).

rpoB encodes the β-subunit of RNA polymerase, a very important enzyme, which is

highly conserved throughout bacteria. The main function of RNA polymerase is the

synthesis of mRNA, rRNA and tRNA, specifically the β-subunit provides most of the

catalytic function (89). It has been shown that like the 16S rRNA gene the rpoB gene

contains alternating variable and conserved regions (90). The hypervariable region of
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rpoB has shown promise for bacterial identification down to the species and subspecies

levels (91, 92). However, rpoB is in general less conserved and therefore more specific

primers are necessary. Combined with 16S rRNA a deeper level of identification should

be obtained. To enhance this identification a third gene can be added, in this case 23S

rRNA was selected.

23S rRNA forms part of the large prokaryotic subunit 50S which contains the ribosomal

peptidyl transferase. The main enzymatic function of this protein is the formation of pep-

tide bonds between adjacent amino acids during protein biosynthesis. This is an essential

process and thus 23S is highly conserved. 23S rRNA shows a similar pattern of variable

and conserved regions as 16S rRNA and can therefore be used for biodiversity analysis

(93). 23S rRNA is larger than 16S rRNA and thus could offer deeper phylogenetic analysis

due to larger sequence variation (94).

Studies have shown that it is unrealistic to try and characterise all known species from

a single genome sequence (15, 16). Therefore an adequate depth of coverage is required

for DNA sequencing for the accurate characterisation of the bacterial composition of a

sample.

3.2.2 Primer Design

With the targets chosen the subsequent step was to design suitable primers for each

target. For each target a set of species were chosen to base the primer design on (see

Table 3.1). For 16S/23S rRNA the species were chosen as they come from the top four

phyla (Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria) previously found

in the saliva microbiome (84). With these two pairs the broadest coverage possible was

desired which is why species representing the top four phyla were chosen and not just

the top phylum. Specifically, Staphylococcus aureus is a Firmicute found in the human

respiratory tract (95), Escherichia coli is a proteobacterium found in the human gut (96),

Mycobacterium is an actinobacterium which was chosen as it is different and if successfully

included would add more diversity (97), Bacteroides fragilis is a bacteroidete and the most

common species found in clinical specimens (98) and Afipia broomeae is a proteobacterium

found in human sputum (99).

For rpoB1 all of the chosen species come from the phylum Firmicutes, the top phylum

found in the saliva microbiome. Streptococcus pyogenes and Streptococcus bovis were

chosen as Streptococcus is one of the most common bacteria found in the mouth (100).

Along with Staphylococcus aureus, described above and Enterococcus faecalis which is
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3.2 DNA extraction and amplification

16S/23S rRNA RpoB1 RpoB2

Staphylococcus aureus Staphylococcus aureus Escherichia coli
Escherichia coli Streptococcus pyogenes Klebsiella oxytoca
Mycobacterium Streptococcus bovis Serratia marcescens
Bacteroides fragilis Enterococcus faecalis Enterobacter cloacae
Afipia broomeae

Table 3.1: List of species used for primer design by target

frequently found in root canal-treated teeth (101). For rpoB2 all of the chosen species

come from the phylum proteobacteria, the third most common phylum found in the saliva

microbiome. Specifically, Klebsiella oxytoca is associated with nosocomial infections and

can colonise different areas of the human body (102), Serratia marcescens is also linked to

nosocomial infections and is commonly found in the respiratory tract (103), Enterobacter

cloacae is found in the human gut and has been associated with respiratory tract infections

(104) and Escherichia coli described above. For both rpoB primer pairs the aim was to

have a deeper coverage of species only covered at the genus or higher level with 16S

rRNA/23S rRNA, for example, streptococcus, hence the use of only one phylum.

Before starting from scratch a literature search was carried out to see whether any suitable

primers had already been designed and tested. Adekambi and Drancourt (105) published

a table of commonly used primers for 16S rRNA and rpoB however, due to the small insert

size required for Illumina sequencing, the distances between the primers was too large to

be applicable to this study. For 23S rRNA no commonly used primers were found.

The first stage of primer design invovled extracting the sequence for each of the chosen

species, see Table 3.1, from the NCBI nucleotide database in ‘fasta’ format. The sequences

along with their GI number, taxon name and gene description were pasted into a word

processor. The sequences were subsequently uploaded into Multalin, an online tool for

aligning multiple sequences (106). As described in the previous section 3.2.1 the structure

of the genes allows for primers to be designed in conserved regions and amplify hypervari-

able regions, however it is not always possible to design primers in a completely conserved

region, this can be due to a number of reasons. Firstly, as Illumina was the chosen method

of sequencing the size of the amplified region and primers was, at the time of design, lim-

ited to 110 base pairs (bp). Secondly, it depends on the taxa used for the alignment, the

broader the range of taxa the harder it is to find completely conserved regions. For 16S

rRNA a mis-match of one base pair was necessary to be able to include Bacteroidetes. As

the mis-match is in the middle the primer should be bound before the polymerase reaches

the mis-match, however the stringency of the primer is lowered and sequences other than
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3. MATERIALS & METHODS

those intended may also be amplified. In this case as the majority of bacteria do not have

the mis-match they will be amplified normally.

For both 16S rRNA and 23S rRNA the alignment was re-done using species specific to

saliva to see whether the designed primers fitted these species. As the rpoB1 species

showed no conserved regions large enough for primer design, a new set of species specific

to Streptococcus were chosen instead as they are the most abundant genus in saliva and

16S rRNA cannot resolve this genus to the species level.

Ideally primers should be as short as possible to maximise the region of analysis, how-

ever a minimum melting temperature (Tm) of 50 ◦C is needed. For multiplexing primers

should all have similar if not the same Tm. The Promega BioMath calculator was used

to calculate the expected Tm of each primer (107). All primers were tested for self-

complementarity using Oligo Calc (108) and all showed none. See Table 3.2 for the list of

proposed primers.

3.2.3 Virtual Simulation

In order to decide whether the chosen primers would yield the best results, virtual sim-

ulation was used to simulate PCR in silico. Two different simulations were needed to

first check that the primers would only amplify bacterial DNA and second to discover

which level of classification could be reached (see Figure 3.2) and the number of different

organisms within that classification. For the first simulation all primers were compared

against the human genome using BLAST (basic local alignment search tool) (109). For

the second simulation (in silico PCR) ecoPCR, a tool designed specifically to test primers

for assessing biodiversity in environmental and taxonomic studies on large databases was

used (110). The NCBI nucleotide database was used to act as the sample. To analyse the

results a dataset of the same size as what was expected from sequencing was used to avoid

any up-scaling problems later on.

Figure 3.2: Flow diagram of the hierarchy of taxonomic classifications Highlighted

by the red box, genus and species are the two classifications that are the most important to this

research.

ecoPCR simulates a PCR reaction and outputs a table with the following information:

accession Number, sequence length, taxonomic (tax) ID, rank, species tax ID, scientific
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3. MATERIALS & METHODS

name, genus tax ID, genus name, family tax ID, family name, super kingdom tax ID,

super kingdom name, strand, first oligonucleotide, number of errors first strand, second

oligonucleotide, number of errors second strand, amplification length, sequence descrip-

tion. From this information the most popular genera/species amplified were compiled and

checked to see whether they corresponded with bacteria commonly found in saliva.

In 2010, when this project started, Illumina sequencing produced about 30 million reads

in total, 4 samples were multiplexed, hence producing 7.5 million reads per sample. As

previously stated, studies have shown that it is impossible to characterise a species from

a single genome sequence, (15, 16) therefore, the more reads per sample, the better the

coverage. If the virtual simulation proved successful with all genes tested yielding positive

results then all 3 genes with two sets of primers for both 16S rRNA and rpoB would be

used. With 7.5 million reads per sample and the analysis of 5 regions, 1.5 million sequences

per region will potentially be produced. By using five different regions the results can be

combined to increase the power of identification, this means to increase the probability of

identifying an individual.

3.2.4 Primer optimisation

The next step after testing the primers in silico was to test and optimise the primers in the

laboratory. Firstly, the primers were used to amplify human DNA, Escherichia coli and

Streptococcus mitis. Both Escherichia coli and Streptococcus mitis were purchased from

the American Type Culture Collection (ATCC). The Phusion R© Hot Start II polymerase

was used as it is a high fidelity enzyme which limits amplification errors. To check whether

the amplification had worked the samples were run on an acrylamide gel (see appendix B

(section 8.4) for protocols). Initially the Tm used was the one calculated using Promega

BioMath (see above), however the results were not optimum. The Phusion enzyme has its

own formula for calculating Tm, this formula was used and the result averaged with the

Promega BioMath calculator result to give a more accurate Tm. To experimentally find

the optimum Tm the reaction was carried out using a temperature gradient of 56 ◦C to

66 ◦C in increments of 2 ◦C. Once the primers had been optimised using human DNA, E.

coli and S. mitis they were tested on pure saliva samples.

3.3 Sequencing Methods

This section presents both types of sequencing; traditional and high-throughput, along

with their limitations for the analysis of bacteria. All of these are presented to show where
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the analysis of bacteria is at the moment and why Illumina was the chosen technique.

3.3.1 Traditional methods

The principle traditional method for analysing bacteria is culturing and the original

method of sequencing is Sanger sequencing, so both of these are presented below.

3.3.1.1 Culturing

The traditional way to investigate the types of bacteria found in a sample involves culturing

the bacteria on different media. The shape, colour and size of the colonies can be used to

identify each type of bacteria. This technique is mainly used in diagnostics for determining

the cause of an infectious disease. Many diseases are site specific so when undertaking

diagnostic tests a doctor knows, in general, which bacteria to look for so picks the media

necessary to grow the specific family/genus. Whereas, for this project, identifying as many

bacteria as possible is key, therefore, a technique which does not rely on choosing the right

types of media would be necessary. In addition, this method is not suitable for this project

as only the more common types of bacteria are identified not the rarer ones. It has also

been estimated that >99% of bacteria found in the environment cannot be cultured (111),

more specifically this value is around 30-50% for bacteria found in the oral microbiome,

these figures reiterate the boundaries of this technique.

3.3.1.2 Sanger sequencing

With the arrival of DNA sequencing bacteria could be typed to a whole new level. New

species were and are still being discovered today. Up until a few years ago the favoured

method for sequencing was Sanger sequencing, developed by Fred Sanger in the late 1970s

(112) and further developed in the 1980s (113, 114, 115) to produce longer read lengths

of 450 to 850bp. It is otherwise known as the chain-termination method. This technique

uses dideoxynucleotide triphosphates (ddNTPs) as the DNA chain terminators. These lack

the 3′-OH group necessary for forming the phosophodiester bond between two nucleotides

and hence terminates the DNA strand extension. Each reaction contains a single-stranded

DNA template, a DNA polymerase, a DNA primer, deoxynucleotides (dATP, dCTP, dGTP

and dTTP) and ddNTPs. Four separate reactions are set up each containing the aforemen-

tioned products however, only one ddNTP is included. Therefore one reaction contains

ddATP, one ddCTP and so on. The newly formed fragments are heat denatured and
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separated by size using gel electrophoresis, with each reaction run in a different lane ac-

cording to the ddNTP. The gel is visualised using autoradiography or UV light. The

sequence can be read directly off the gel. This method was effective but time-consuming,

it is mainly for this reason that the technique has been developed further. Hood et al.

(116) developed fluorescently labelled ddNTPs and primers which meant that only one

reaction was needed instead of four, a technique now known as dye-terminator sequenc-

ing. Each ddNTP is labelled with a different fluorescent dye with a specific wavelength

of fluorescence and emission. It is this technique which is exploited by high-throughput

DNA sequence analysers. The main reason Sanger sequencing is no longer favoured is the

cost of analysis. With only 1000 bases being read per run the cost of sequencing a whole

genome is enormous, for example, the sequencing of the human genome cost in the region

of 300 million dollars.

3.3.2 High-throughput sequencing

High-throughput sequencing is a technique for sequencing a large number of DNA se-

quences at the same time at a lower cost. This technique has enabled DNA to be se-

quenced to a depth which was not previously possible. In 2004, the National Institute of

Health set the challenge of the “ $1000 human genome ” to be achieved by 2015. This

has pushed the scientific world to improve high-throughput sequencing technologies with

break-throughs still being made (117). A number of different companies have all produced

high-throughput sequencing machines which work in slightly different ways, the two most

developed at the time of choosing which technique to use, are described below.

High-throughput sequencing has only been developed over the last few years. It is therefore

still a relatively new technique which is subject to certain limitations. These limitations

include; short fragments being difficult to assemble into whole genomes and PCR amplifi-

cation being required before sequencing; a process which can introduce errors decreasing

the accuracy of sequencing. With millions of sequences being produced with every run,

powerful computers are required to analyse the data along with computer programs ca-

pable of processing large volumes of data. Statistical data analysis software needs to be

developed and perfected along with software specific to every application of the technique

to ensure valid conclusions can be drawn. With the popularity of this technique rising

every day the cost of analysis will eventually drop to the point where it could be used

for routine analysis (118). Since the start of this project the cost of analysis has nearly

halved, demonstrating that as the technique advances and becomes more popular the cost

of analysis decreases. One current technique which can be applied to high-throughput
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sequencing to make it cheaper is barcoding. Barcodes can be added to each sample en-

abling them to be analysed in the same lane of one run. The number of reads per sample

decreases as the number of barcoded samples increases, however for many applications one

sample per run produces more sequences than necessary.

3.3.2.1 454 Sequencing

454 sequencing is based on the technique of pyrosequencing and around 400-700 megabases

of DNA can be sequenced per twenty-three hour run, with each sequence read ranging

between 500 to 1000 base pairs. 454 sequencing is a two step process: initially the DNA

is fragmented and oligonucleotide adaptors are attached. These adaptors are used for

purification, amplification and sequencing steps. Then each fragment is attached to a bead

with each bead carrying a unique single-stranded DNA fragment (see Figure 3.3 a(i)). The

beads are then amplified via emulsion PCR (emPCR), where each bead is emulsified with

amplification reagents in an oil-water mixture, hence producing multiple copies of the same

sequence on each bead. Subsequently each bead is captured in a picolitre-sized well on a

fabricated substrate containing the sequencing enzymes (see Figure 3.3 a(ii)). The size of

the wells in the picotiter plate only allow for one bead per well. Finally pyrosequencing is

performed on all the beads in one plate. The four nucleotides; adenine, guanine, cytosine

and thymine, are washed over the plate one at a time. If a nucleotide is incorporated

then an inorganic phosphate (PPi) is released and converted to ATP. The ATP is then

used by luciferase to generate light which is detected and indicates that the base has been

incorporated. This process is repeated about 200 times producing read lengths of 500-

1000bp. The main advantage of this technique is the read lengths produced. The longer

the read length, the easier it is to assemble the DNA fragments. However, there are also

disadvantages to this technique; prone to errors when estimating fragment length, little

ability to detect insertions or deletions of single base pairs and unreliable for sequencing

homopolymers. This unreliability is caused by a lack of reversible terminator nucleotides

enabling more than one base to be incorporated at each cycle (119). It is also possible that

some of the errors found with 454 sequencing could lead to perceived changes in genetic

diversity. When analysing 16S rRNA, about 1000 sequences per sample are required to get

a good depth of coverage. At this level the relative frequencies of species at 1% abundance

can be fairly accurately inferred, however, many rare species will be missed (78).
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3.3.2.2 Illumina

Illumina sequencing technology is based on the technique of sequencing by synthesis and

about 20-500 Gb of paired-end data per run is produced with sequence reads now up to

300 base pairs. The initial step involves fragmenting the DNA and attaching adaptors.

The fragmented DNA is then attached to a planar, optically transparent solid surface and

amplified using bridge PCR and anchored primers (see Figure 3.3b(i)). This solid-phase

amplification undergoes multiple cycles producing an ultra-high density sequencing flow

cell which contains clusters, with each one consisting of about 1000 copies of the same

single-stranded DNA template. Subsequently, sequencing is performed using a combina-

tion of primers, DNA polymerase and four fluorophore-labelled, reversibly terminating

nucleotides (see Figure 3.3b(ii)). When a nucleotide is incorporated an image is taken

and the identity of the base noted. The fluorophores and terminators are removed and

the incorporation, detection and identification steps are repeated. The whole process is

repeated again from amplification to sequence the reverse strand. This technique can pro-

duce many more sequence reads than 454 sequencing, however the reads are much shorter.

It is thought that due to the increased number of sequences Illumina is a better technique

for analysing genetic diversity. The possibility of paired-end sequencing enables analysis

of sequences from both ends producing overlapping reads. Hence, combating the prob-

lem of low-quality ends produced by single reads as the ends can be overlapped to form

high-quality consensus sequences. The purpose of this study is to compare the genetic

diversity of samples between people, therefore, Illumina is the chosen technique as it is

more accurate at measuring genetic diversity (120).

3.3.2.3 Newer techniques

Since the start of this project many other companies have produced high-throughput

sequencing machines which are competing with both 454 and Illumina. The three most

prevalent are: Ion Torrent, Pacific Biosciences and Oxford Nanopore. Ion Torrent uses

semiconductor sequencing technology, which is based on hydrogen ion detection (121).

This technology has been evolving quite fast and can now offer a variety of sequencing

options including: single or paired-end reads, read length from 35 to 400 bp and runs as

short as 90 minutes (122). However, it suffers from similar problems as 454 in terms of

sequencing errors concerning homopolymers and therefore, it’s error rate is higher than

Illumina. The sample preparation is also much more labour intensive than for Illumina.

The cost of sequencing is about $1000/Gb which is much higher than Illumina ($41/Gb

for the HiSeq 2000 and $502/Gb for the MiSeq) (123). Pacific Biosciences have produced a
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Figure 3.3: Overview of 454 and Illumina sequencing techonologies. (a) 454 py-

rosequencing. Oligonucleotide adaptors are attached to fragmented DNA, subsequently the DNA is

immobilised on a bead and amplified in a water-oil emulsion. For sequencing, each bead is placed

in a picolitre well with dNTPs, DNA polymerase and the enzymes needed for the chemiluminescent

reaction. Each base is washed over the wells one at a time, if the base is incorporated then pyrophos-

phate is released which then helps produce ATP and yields enough energy to generate light. The

light emitted is recorded enabling the sequence to be deduced. (b) Illumina sequencing. Oligonu-

cleotide adaptors are ligated to fragmented DNA and used to attach the fragments to a prepared

substrate densely populated by complementary primers. Bridge amplification is performed to amplify

the immobilised template using immediately adjacent primers to form clusters. DNA polymerase and

terminator nucleotides are subsequently added to create the complementary DNA strand. An image

is taken at the end of each cycle to enable the identification of each added base. [Adapted from Figure

1 (119)]
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single molecule real-time sequencer, enabling the observation of DNA synthesis in real-time

(124). This technology can sequence the longest read lengths of any platform at around

8.5kb however, the number of reads sequenced in one run is limited to around 50,000. The

run time is also quite quick ranging from 30 minutes to 3 hours. This technique is good for

characterising plasmids, viruses, mitochondrial DNA and microbial pathogens (125) but

not so good for bacterial community analysis. This technology is still being developed,

has high error rates and the highest cost of all platforms at about $2000/Gb. Oxford

Nanopore technology is based on nanopore sensing and provides single molecule real-

time sequencing (126), much like Pacific Biosciences. Unlike Pacific Biosciences Oxford

Nanopore have developed a way to parallelise the sequencing making it possible to analyse

many sequences/samples at the same time. This technology is even newer than that of

Pacific Biosciences and is therefore still being developed and not much data is available

to compare it with other more established techniques. One advantage of single molecule

sequencing is that amplification is not required, hence removing a major source of bias and

lower DNA input concentrations are possible. These techniques all show promise, however

when I was choosing which sequencing technique to use these were not well established

enough. Furthermore, Illumina still stands up to these new technologies producing high

quality reads at a great depth.

3.3.2.4 Sample preparation

Before the amplified samples could be sequenced they needed to be prepared. First, the

samples were quantified using a Qubit fluorometer (Life Technologies) and then run on a

Fragment Analyzer (Advanced Analytical) to check purity and concentration. To limit the

number of barcodes used all amplified targets from the same sample were pooled together

and the pooled sample barcoded. To pool samples, equal molar amounts of each sample

are necessary, in this case approximately ten picomoles of each was used. The samples

were then purified using Agencourt AMPure XP PCR purification (Beckman Coulter) to

remove the PCR reagents as they interfere with the sequencing library preparation. The

purified products were then separated on an agarose gel (E-gel R©SizeSelectTM) and the

band corresponding to the target size (120bp) excised. Finally, the sequencing libraries

were prepared using the TruSeq DNA sample preparation kit (Illumina), following stan-

dard protocol (127) and then re-run on the bioanalyser to check concentration and purity.

Additionally the libraries were checked to see if they were balanced, i.e. an even number of

each base at each point in the sequence. If unbalanced, i.e. one base dominates, it can be

difficult to read the base in that position as the flow cell will look like a smear of a single
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colour. If the libraries are unbalanced there are two ways to get around it: 1) load half

as much to dilute the effect and 2) mix the library with a known well-balanced library to

give the necessary contrast. In this case the libraries were balanced. Finally the libraries

were loaded onto the HiSeq 2000 and sequenced using the paired-end reads 100 cycles run

type.

3.4 Data Processing

After sequencing the data produced is in the form of sequences of bases. For Illumina

sequencing the CASAVA 1.82 pipeline is used for base calling and links to FastQC for

quality control (see Figure 3.4 for overview of initial stages of sequence processing). Casava

also separates the samples by barcode producing, in this case, four different samples with

each sample divided between up to twenty eight files, as paired end sequencing was used

there are up to fourteen files for read one and up to fourteen for read two.

3.4.1 FastQC

Before any data analysis could take place the sequences were quality controlled using

FastQC a program which gives an overview of the sequence quality from all aspects.

This system is based on what FastQC classes as a ’normal’ sample which is a random and

diverse sample. If a library is known to be bias then that has to be taken into account when

using the quality assessment of FastQC. The following measures are given: basic statistics,

sequence diversity, sequence identification, per base sequence quality, per sequence quality

scores, per base sequence content, per base GC content, per sequence GC content, per base

N content, sequence duplication levels and overrepresented sequences. For each different

measure there is a set threshold for issuing a warning or a fail. Running FastQC in Casava

mode removes sequences flagged for filtering and therefore the total sequence count does

not include the filtered sequences (128).

3.4.2 Flash

The second step was to overlap all the paired reads to produce the consensus sequences for

each sample. FLASH (Fast Length Adjustment of SHort reads) was the chosen software

to correctly overlap the reads (130), specifically version 1.0.2 was used. FLASH 1.0.2 was

run locally using the following command line and parameters (GG4 R1 and GG4 R2 are

the two individual reads that are to be paired together):
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Figure 3.4: Schematic representation of the initial stages of sequence processing
from the Illumina platform (129) - (Reproduced with permission from Illumina)

../FLASH_v1.0.2/flash GG4_R1_001.fastq GG4_R2_001.fastq -m 20 -M 110

-f 120 -d GG4_001_flash

-m minimum overlap (minimum required overlap length between two reads

to provide a confident overlap, default 10bp), 20bp was used.

-M maximum overlap (maximum overlap length expected in approximately

90% of read pairs, default 70bp) 110bp was used.

-f average fragment length (default 180bp) 120bp was used.

-d defines output directory

3.4.3 Barcode splitter

After the reads had been paired the next step was to split each sample into the individual

targets; 16S rRNA, rpoB1 and rpoB2. To carry out this task barcode splitter was used.

Barcode splitter comes from the FASTX-tool kit, a set of tools for pre-processing FAS-

TA/Q sequence reads (131). Before barcode splitter was employed all the paired reads

from one individual were concatenated to produce one file containing all the consensus

sequences. Due to each primer having a different length each target was split separately.

Barcode splitter was run locally using the following command line and parameters:

cat SL4_all_out.extendedfrags.fastq | /Users/admin/Desktop

/fastx_toolkit-0.0.13.2/scripts/fastx_barcode_splitter.pl

--bcfile strep.txt --bol --exact --prefix SL3_004_

–bcfile barcode file

–bol try to match barcode at the beginning of sequences

–exact no mismatches allowed

–prefix prefix for output file
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3.4.4 Clustering

The next step after the samples had been split into the three different targets was to

cluster the sequences. There are two types of methods which can be used; supervised

and unsupervised. Supervised techniques involve directly comparing the sequences with a

database of known sequences mainly employing BLAST and constructing a phylogenetic

tree, this is otherwise known as a homology-based approach (132). The main problem with

this type of method is it will only cluster sequences which are in the database whereas

all others will be classified as unassigned. This makes it difficult to characterise novel

sequences. The classification of each sequence is dependent on the completeness of the

database. Often these databases are only classified to the genus level or higher, not species

level. For this study the more taxonomic assignments at species level the greater detail

that should give for characterising the microbiome. Obviously at some stage in the analysis

process taxonomic assignment is important to be able to analyse which taxa are present,

however it is best to do this as far downstream as possible to avoid any bias in the data.

The second problem is the choice of distance measure used to create the phylogenetic

tree. Many distance measures exist which all use different calculations, so each one will

represent the data in a slightly different way.

Unsupervised techniques cluster the sequences into Operational Taxonomic Units (OTUs)

based on their similarity, with no prior information. An OTU is defined as a group of

organisms with target sequences that show a certain level of identity (133). In the case

of 16S ribosomal RNA at least 97% identity is required for the OTU to be considered

equivalent to the working definition of species. For rpoB the value is lower at about

95% (134). Many programmes exist to cluster sequences into OTUs with three different

methods available; hierarchical clustering, heuristic clustering and model-based clustering,

all of which have their advantages and disadvantages (135). For hierarchical clustering

initially a distance matrix is calculated using the difference between each pair of sequences

then a specific similarity level is set and standard hierarchical clustering is used to define

the OTUs. This method is intrinsically computationally complex and therefore is not

well suited to large datasets. Heuristic clustering functions by first defining a similarity

threshold then it takes a sequence and uses that as a seed for the first cluster then each

sequence is analysed sequentially. If the distance between the representative sequences of

the existing clusters and the query sequence falls within the pre-defined threshold then

the query sequence is added to the corresponding cluster, if not then it becomes the seed

sequence for a new cluster. Both of these methods use strict threshold values which has

caused debate as some studies have shown that it can be difficult using a strict threshold
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as there is overlap in the maximum intra-taxon distance between taxonomic levels (136).

Model-based clustering was proposed to overcome this problem. This method uses an

unsupervised probabilistic Bayesian clustering algorithm with a soft threshold avoiding

setting a strict threshold (137).

For this project CD-HIT a heuristic clustering algorithm was chosen due to its capacity

to deal with very large datasets quickly (138). The speed of analysis comes from the use

of short word filtering which takes short substrings (words) and compares them between

sequences, the more the sequences have in common the more similar those sequences

are. This calculates the similarity between sequences without carrying out a sequence

alignment, hence making it faster. This does not provide an exact sequence comparison

however it is effective at estimating whether two sequences are below a certain threshold.

Before this program could be used the fasta header for every sequence was changed to

contain the sample name and make it smaller as in the CD-HIT output file each sequence

header can only contain a restricted number of characters. Specifically CD-HIT-EST

4.5.4, the algorithm used to cluster nucleotide sequences (139), was run locally using the

following command line and parameters:

/Users/admin/Desktop/cd-hit-v4.5.4-2011-03-07/cd-hit-est -i all_16S2.fa

-o 16S2_97 -c 0.97 -n 9 -M 9000

-i input file (fasta file containing all sequences from one target from one

sample)

-o output filename

-c clustering threshold (here it is 97% for 16S rRNA and 95% for rpoB)

-n word length

-M maximum available memory (Mbyte)

CD-HIT-EST ouputs two files, the first is a fasta file containing representative sequences

for each cluster and the second a text file containing a list of clusters.

3.4.5 Data filtering

The final step of data processing involves transforming the list of clusters into a table

containing the abundance of each taxa per sample. Firstly, the CD-HIT-EST output

cluster file was filtered along with the fasta file of representative sequences. Cluster filtering

is necessary due to errors introduced during the amplification and sequencing processes.
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An error in amplification or sequencing can lead to a cluster appearing as novel when in

reality it is an error. These errors mainly affect low abundant taxa. It is possible that

some singletons (taxa represented by one sequence) are real however it is impossible to

differentiate these from errors. A threshold is set to remove any clusters with less than

the specified number of sequences from the dataset. Choosing this threshold has caused

much debate, with most groups deciding upon three, i.e. they keep all clusters containing

three or more sequences (84). However, this threshold is data dependent and can vary

for different studies. For this study any clusters containing less than twenty sequences

were filtered out. This threshold was chosen to ensure that as many errors as possible

were removed whilst keeping enough data. For a forensic application the removal of error

is of utmost importance so it is best to be over cautious. The choice of threshold was

calculated by performing the analysis through to hierarchical clustering using the same

clustering parameters (shown above) and comparing the relative distances and separation

of samples. A threshold of 10 was also tested to see the effect of using a lower threshold,

however the results were not that different. Therefore, I chose to use a threshold of 20 to

help ensure removal of errors. To filter the cluster file the python script filter cluster.py

was used (see appendix B (section 8.5.1)). This script produces a filtered fasta file and

a summary table containing the abundances of each sample per cluster, however at this

point the taxa have not yet been assigned to each cluster.

3.4.5.1 BLAST

To assign the taxonomy to each cluster BLAST was used. The filtered fasta file con-

taining the representative sequences for each cluster containing twenty sequences or more

was inputted into BLAST and compared against the entire nucleotide database. BLAST

functions by finding regions of local similarity between query sequences and a sequence

database and calculates the statistical significance of the match (109). The basic output

of BLAST contains all the possible matches however for this study only the best match is

required. To produce this BLAST has a Best-Hit algorithm which filters out the best hit

using the expect value (E-value) and bit score. The bit score indicates whether the align-

ment is good or not, the higher the score the better the alignment. The E-value indicates

how statistically significant an alignment is, the lower the E-value the more significant the

hit is. For example, an E-value of 0.05 means that the similarity has a 0.05 probability

of occurring by chance alone. In essence, the E-value is considered as a measure of the

random background noise. It takes into account the size of the database so calculates the

chance of a sequence occurring by chance in that particular database. For short sequences
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the E-value will naturally be higher as the E-value calculation takes the sequence length

into account and small sequences have a higher probability of occurring in the database

by chance. The Best-Hit algorithm uses a large bit score (best hit overhang) and a low

E-value (best hit score edge) to filter out the best alignment for each cluster(140).

BLAST nucleotide (blastn) was run locally using the following command line:

/usr/local/ncbi/blast/bin/blastn -query 16S_filter.fa -db nt_db

-evalue 1e-10 -best_hit_score_edge 0.05 -best_hit_overhang 0.25

-num_descriptions 1 -num_alignments 1 -out 16S_97_blast_best_hit

By setting both num descriptions and num alignments to one the output file contained

only the top hit for each sequence.

3.4.6 Table production

The next step involves combining the blast best hit with the filtered fasta file to produce a

table containing the abundance of each cluster with the taxon assignment for each sample.

To achieve this the python script sort cluster.py was used (see appendix B (section 8.5.2)).

As expected some of the clusters represent the same taxon so to get a better idea of how

many of each taxon are present a second table was produced summing together any clusters

with an identical taxon assignment. The python script adjust table.py was used to produce

this table (see appendix B (section8.5.3)). There is a risk with combining the abundance

data in that the taxon assignment could be wrong as BLAST outputs the best hit however

this might not be the correct hit. As BLAST uses a database it relies on the annotation

in the database being correct. For this study, the NCBI nucleotide database was used

as it is the main database containing all annotated nucleotide sequences and as three

targets were used, to keep as many parameters as possible the same, a generic database

was necessary. In order to more easily manage the data the merging of the abundances

was necessary. To minimise any error the abundances were only combined if the taxon

names matched exactly, meaning that different strains of the same species were classed as

being different.

3.5 Data interpretation

With the data in the form of an abundance table for each species in each sample, the next

step was to work out which taxa are the best at separating out different individuals and

which ones are common between all.
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3.5.1 Normalisation

In order to compare the datasets from both experiments (t1,t2 and t3,t4) the abundance

counts were normalised to avoid bias effects due to differences in sequencing of the samples.

Normalisation puts all of the datasets on the same scale enabling accurate comparison.

This data consists of counts of sequences and this needs to be taken into consideration

when choosing which method of normalisation to use. This data cannot be normalised by

total read count as a few highly abundant OTUs may have a strong influence on the total

read count and therefore the ratio of total read counts will not be a good estimate for the

ratio of expected counts.

For this study DESeq, a package designed to estimate variance-mean dependence in count

data from high throughput sequencing experiments was used. Specifically DESeq was

designed for use with RNA-seq differential gene expression assays (141) however, the

principal behind its use is the same. The type of data produced i.e. containing a few high

abundant species is similar and the constraints caused by high throughput sequencing are

the same, it is only the downstream analysis which differs. Normalisation is only one of

the applications offered by DESeq. For the normalisation process instead of using total

read count the median of the ratios of observed counts is used.

DESeq uses statistical testing to see whether, for a given OTU, the difference in read

counts can be considered as significant under a list of assumptions i.e. is it greater than

what would be observed through natural random variation (141). Previous studies have

modelled count data using a multinomial distribution (approximated by a Poisson dis-

tribution (142, 143)). However, this would only work if the reads were independently

sampled from a population containing a fixed fraction of OTUs. The assumption of the

Poisson distribution is too restrictive as it predicts smaller variation than what is observed

in the data. To address this problem, a negative binomial (NB) distribution could be used

(141) which has parameters that are defined by the mean (µ) and variance (σ2). However,

often the number of replicates is too small to accurately estimate both mean and variance.

Yet if it is assumed that the mean and variance are related by equation 3.1 with α being

a single proportionality constant that remains the same throughout the experiment and

can be estimated from the data, then only one parameter needs to be estimated for each

OTU. Hence, this method can be applied to experiments with small numbers of replicates.

This technique only works with datasets containing a few very abundant OTUs and the

rest being a lot less abundant otherwise could normalise away any variance.

σ2 = µ+ αµ2 (3.1)
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In order to normalise the two experiments together, the two abundance tables were com-

bined using the python script concatenate.py (see appendix B (section 8.5.4)). This script

combines both tables and inputs zero abundance for OTUs not found in the other exper-

iment. A debug file is also outputted containing the taxon name from both input files for

non-exact matches so they can be verified.

To use DESeq the DESeq library was loaded into R and the following steps taken (144):

1. the combined abundance table was uploaded in csv format.

2. conditions vector created - this informs the program which samples belong together

3. newCountDataSet created

4. size factors estimated - size factors are used to render counts from different samples,

which may have been sequenced to different depths, comparable

5. normalised counts visualised

3.5.2 Data transformation

After data normalisation the next step was to transform the data to enhance the potential

differences in the data. As mentionned above the data contains a few highly abundant

taxa with the rest being a lot less abundant. To minimise the effect of the highly abundant

taxa the data was transformed by taking the log10(x+1) of each count (x). One was added

to the log transformation to avoid problems with zero counts as log10(0) is undefined

and therefore cannot be calculated, whereas log10(1) is zero. This transformation brings

the data to a more manageable size by reducing the range. To analyse the experiments

individually normalisation is not required, only log transformation. After either both

normalisation and log transformation or just log transformation the data is in the form

of a table as presented above in section 3.4.6, see supplementary files for data tables

(https://independent.academia.edu/SarahLeake/Papers).

3.5.3 Significant taxa

In order to work out which taxa were significantly different between individuals some

descriptive and inferential statistics were carried out. The first was to calculate the mean

abundance between the samples from one individual, first for each experiment separately

then for both experiments combined. To be able to support whether there was a difference

between the means both Frequentist and Bayesian methods were applied. Frequentist F-
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and t-tests were performed as suggested by large biological literature (145). Specifically, an

unpaired, 2-tailed t-test was performed using excel. However, this methodology (notably

through the use of p-values) often causes pitfalls of intuition (in fact, usually scientists

believe that if the p-value is greater than a given threshold, say 0.05, then there is no

significant difference between, say, the means of the two populations of interest).

A frequentist p-value answers the following question ‘how frequently would I observe a

result at least as extreme as the one obtained if the null hypothesis were true?’ This

represents a statement about the plausibility of the data given the hypothesis. It is out

of the scope of this Ph.D research to debate on pros and cons of statistical methods.

Anyway, let us note that one of the appealing features of Bayesian methods is that they

allow one to overcome the definitional difficulties that arise with frequentist hypothesis

testing where users may tend to view the p-value as the probability of the null hypothesis.

As previously expressed, when p = 0.05, it is tempting to state that there is only a 5%

probability that the null hypothesis is true. The p-value cannot, however, measure the

probability of the truth of the null hypothesis because its calculation assumes the null

hypothesis is true. Bayesian analysis allows the definition of a (prior) probability (i.e.,

a probability that is evaluated, usually subjectively, prior to observation of the data) for

each hypothesis (null and alternative), that is an expression of the personal degree of

uncertainty about a hypothesis truthfulness, on the basis of which a posterior distribution

(i.e., a probability that is evaluated posterior to observation of the data) for the hypotheses

can be inferred.

A Bayesian approach allows one to calculate the probability that the two populations

means are (are not) equal and so express how confident one can be on the hypothesis of

interest (say, that the two populations have different means).

An ingredient of the Bayesian model, the so-called Bayes factor (BF for short), is used in

this research data treatment. The BF value supports one or the other of the hypotheses

of interest (same/different means). A value greater than 1 supports the first hypothesis,

a value less than 1 supports the alternative hypothesis. A value equal to 1 does not allow

one to discriminate between the hypotheses. Note that larger the value, greater is its

support of the hypothesis.

So, from a Bayesian point of view, by considering two groups of observations, it is of

interest to test the equality of the means. More specifically, a scientist may intend to

test the null hypothesis, say the difference between the two means equals 0 versus the

alternative hypothesis that the difference does not equal 0. So, a BF greater than 1

supports the main hypothesis (there is no difference between the two means) and a value
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below 1 supports the alternative hypothesis that there is a difference between the two

means1.

The above calculations were performed on a species by species basis meaning that only

abundances from the same species were compared between each other. The p-values and

BF values for all species comparisons are found in supplementary spreadsheet ‘ data ’

(https://independent.academia.edu/SarahLeake/Papers).

3.5.3.1 Hierarchical clustering

The data was ordered based on the p-values and BF values with the smallest p-value/BF

value first, representing the most significant taxon. To visualise how the most significant

taxa separated the samples hierarchical clustering was performed. This method is recom-

mended when comparing a small number of samples, which is the case here. Hierarchical

clustering shows how the samples group together not precisely which taxa are best at sep-

arating the groups. To perform this technique the hclust algorithm in R was used (147).

Firstly a distance matrix was calculated using the Euclidean distance. hclust provides a

number of different clustering methods described below:

complete
linkage

the distance between the clusters is determined by the objects which are

furthest apart, this finds similar clusters.

single linkage uses the ’friends of friends’ strategy often producing one big cluster with

a few small cluster

average
linkage

uses the average distance between the members of the clusters and is

half-way between complete and single linkage.

Ward takes into account the number of members in each cluster, producing

clusters similar to complete linkage.

The hierarchical clustering was visualised in the form of a dendrogram produced using the

as.dendrogram function in R (148).

3.6 Further analysis

Once the basic analysis of which taxa were significant and whether it was possible to

separate samples from different individuals using these taxa, further analysis was required

1Details of the calculations are presented in (146), chapter 6.
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to identify the minimum number of sequences per target required to achieve adequate

separation and which clustering threshold was best.

3.6.1 Minimum number of sequences

In order to work out the minimum number of sequences required to separate samples from

different individuals the data was sub-sampled at different levels. This was performed

on the sequences from the first experiment only and on each target separately. The

combined sequences from each target where split up into each sample using the python

script file splitter.py (see appendix B). Subsequently, a second script rand.py (see appendix

B (section 8.5.5)) was used to randomly sample sequences from each file. The sub-sampled

files were then concatenated and the analysis process followed as described above (3.4.4

onwards).

3.6.2 Clustering threshold

As above only the first experiment was used to test different clustering thresholds. As de-

scribed in section 3.4.4 CD-HIT-EST was used to cluster the samples into OTUs. Exactly

the same process was followed here except the clustering threshold was changed. For 16S

rRNA 80%, 90%, 97%, 98% and 100% similarity were tested and for both rpoB targets

80%, 90%, 95%, 96% and 100% were tested. The rest of the protocol was followed as

described above (3.4.5 onwards).
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4

Results - Primer design and

virtual simulation

This chapter presents the results of the primer optimisation and the virtual simulation of

the optimised primers. This stage is important to ensure the primers used are efficient

and amplify the desired bacteria.

4.1 Primer Design

The primers were designed by aligning the 16S rRNA, 23S rRNA or rpoB gene sequences

from target species, see Table 3.1, and finding the best overall region in terms of both

conserved regions for primer binding and hypervariable regions for maximum taxa differ-

entiation within the size limit for Illumina sequencing. Once the primers had been designed

using generic species they were then checked against species known to be found in saliva

(see Table 4.1). For 16S rRNA and 23S rRNA a mix of species was chosen to cover the

principle expected phyla; Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes.

Figure 4.1 shows that for 16S rRNA pair one the forward primer falls in a highly conserved

region with only two mismatches for Veillonella parvula. The reverse primer also falls in a

conserved region however there are a few more mismatches; three for Mycoplasma buccale

and one each for Porphyromonas gingivalis and Prevotella oralis. No sequence is visible

for N. mucosa as that sequence could not be aligned with the others. For the second

pair a similar pattern is seen (see Figure 4.2), with the forward primer having only one

mismatch for M. buccale and two for P.gingivalis and P. oralis. The reverse primer has

one mismatch for both L. salivarius and P. gingivalis. There is no sequence visible for

N. mucosa and V. parvula as neither could be aligned with the others. As 16S rRNA is
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a gene essential for life and therefore found in all taxa it is evident that not all taxa will

have the same sequences in the conserved regions due to natural genetic variation. This

shows that even though the primers were designed using a more general set of species they

can still be applied to a more specific set of species. The specific region amplified for 16S

rRNA is the V5 region, this choice is corroborated by Lazarevic et al. (84) where very

similar primers were designed.

The alignment for 23S rRNA with species known to be found in saliva does not yield

good results (see Figure 4.3). Firstly, only four out of the ten chosen species could be

aligned with the primers and of those four only two match exactly with the forward

primer and three with the reverse primer. Even with this result these primers were still

carried through to the initial stage of primer optimisation to see whether the target region

could be amplified.

Figure 4.1: 16S rRNA first primer pair (783F-878R) alignment with species found
in saliva - Bases in blue are identical and form the consensus sequence whereas bases in black
differ from the consensus sequence. Primer1 corresponds to the forward primer and primer2
to the reverse primer. (Alignment performed using Multalin (106))

Figure 4.4 shows the alignment for rpoB1 pair one with species known to be found in

saliva. For the forward primer the sequence matches exactly indicating that the chosen

region is very conserved. For the reverse primer the sequence matches exactly except for S.

anginosus which has two mismatches. As for 16S rRNA this shows that primers designed

using more general species can be applied to more specific species. The alignment for the

second pair of primers for rpoB1 is not as good. Figure 4.5 shows that the sequence for S.

pyogenes is not as conserved as the others and does not really match either the forward or

reverse primer. The forward primer matches the rest exactly except for S. bovis for which,
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Figure 4.2: 16S rRNA second primer pair (1097F-1175R) alignment with species
found in saliva - Bases in blue are identical and form the consensus sequence whereas bases
in black differ from the consensus sequence. Primer1 corresponds to the forward primer and
primer2 to the reverse primer. (Alignment performed using Multalin (106))

Figure 4.3: 23S rRNA alignment with species found in saliva - All bases are in black
as there is no consensus sequence. Primer1 corresponds to the forward primer and primer2 to
the reverse primer. (Alignment performed using Multalin (106))
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it has two mismatches. The reverse primer matches both S. bovis and S. oralis exactly and

S. anginosus and S. mitis with one mismatch. This indicates that the first pair of primers

for rpoB1 would yield the best results. For rpoB2, both the forward and reverse primers

do not match exactly with any of the saliva specific species. This indicates that this region

is not as conserved however, enough bases are in common that the amplification should

work, therefore this primer pair was kept and optimised. For both rpoB targets the V1

region was chosen.

Figure 4.4: rpoB1 first primer pair (130F-220R) alignment with species found in
saliva - The blue bases show where the primers bind and the black bases represent the rest of
the sequences. Primer1 corresponds to the forward primer and primer2 to the reverse primer.
(Alignment performed using Multalin (106))

Figure 4.5: rpoB1 second primer pair (340F2-439R) alignment with species found
in saliva - Bases in blue are identical and form the consensus sequence whereas bases in black
differ from the consensus sequence. Primer1 corresponds to the forward primer and primer2
to the reverse primer. (Alignment performed using Multalin (106))

All primers were then tested in silico using EcoPCR (110).
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Figure 4.6: rpoB2 alignment with species found in saliva - Bases in blue are identical
and form the consensus sequence whereas bases in black differ from the consensus sequence.
Primer1 corresponds to the forward primer and primer2 to the reverse primer. (Alignment
performed using Multalin (106))

16S/23S rRNA RpoB1 RpoB2

Streptococcus mutans Streptococcus bovis Haemophilus parainfluenzae
Streptococcus salivarius Streptococcus anginosus Porphyromonas gingivalis
Actinomyces naeslundii Streptococcus oralis Prevotella nigrescens
Actinomyces oris Streptococcus mitis Prevotella melaninogenica
Lactobacillus salivarius
Rothia dentocariosa
Neisseria mucosa
Veillonella parvula
Fusobacterium nucleatum
Haemophilus parainfluenzae
Porphyromonas gingivalis
Prevotella oralis
Mycoplasma buccale

Table 4.1: List of species used for primer design check by target

4.2 Virtual Simulation

For the first simulation all primers were compared against the human genome and the

NCBI nucleotide (nt) database using BLAST (basic local alignment search tool) (109)

(see Table 4.2 for results). All primers showed no 100% match with the human genome

however, smaller portions of the primers did match. Due to the size of the human genome

and the short length of the primer sequences it is unsurprising that parts of the primers

match. It is possible that a small amount of human DNA is amplified with these primers,

however it is unlikely this will impede the amplification of the target regions. This is very

important due to the high amount of human DNA in the samples. Results presented in

section 5.1 confirm this experimentally as sequences from Homo and Pan make up about

1% of total sequences. The comparison against the nt database shows that all primer
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pairs are target specific. In addition, for both 16S rRNA and 23S rRNA the primers

were compared against target specific databases using their probe match tools. For 16S

rRNA the Ribosomal Database Project (RDP) (149) was used and for 23S rRNA the Silva

comprehensive ribosomal RNA database (150) was used. For 16S rRNA the first primer

pair (783F-878R) matches about 55% of the bacterial sequences with the second primer

pair (1097F-1175R) matching only 44% of the sequences. For 23S rRNA even though the

primers are specific they only match about 6% of the sequences in the database, indicating

that this primer pair would not provide adequate results.

Target
primers

Primer BLAST
human

BLAST
bacteria

Probe match
bacteria

16s rRNA

783F-878R 783F zero specific 886955/1498677

878R zero specific 704827/1498677

1097F-1175R 1097F zero specific 700023/1498677

1175R zero specific 598964/1498677

23s rRNA

1831F-1924R 1831F zero specific 11266/180344

1924R zero specific 11285/180344

RpoB1

130F-220R 130F zero specific n/a

220R zero specific n/a

340F2-439R 340F2 zero specific n/a

439R zero specific n/a

RpoB2

340F-434R 340F zero specific n/a

434R zero specific n/a

Table 4.2: BLAST results for all primer pairs - BLAST human result refers to percent of
sequences which match the primer sequence completely. BLAST bacteria refers to specificity
of result to target region. For 16S rRNA probe match was performed against the Ribosomal
Database Project (RDP) and for 23S rRNA the Silva comprehensive ribosomal RNA database
was used. No probe match tool was available for rpoB. Primer name for 16S rRNA, 23S rRNA
and rpoB2 corresponds to the E.coli positions and for rpoB1 to S.bovis positions.

For the second simulation the nt database was used as the sample to test all targets as

it contains all nucleotide sequences, not a subsection. For 16S rRNA the Human Oral

Microbiome Database (HOMD) (151) exists however this is limited to sequences which

have been associated to the oral microbiome and not those which could still be associated.

Therefore, the nucleotide database was used to include as many species as possible and

not exclude any just because they have not already been classified as being associated to

the oral microbiome. By using the nt database the same database was used for all primer

pairs from all target regions, standardising the approach. As described in section 3.2.3
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ecoPCR was used to simulate a PCR amplification in order to see which bacteria would

theoretically be amplified by the primers.

For 16S 1, 16S 2 and 23S rRNA primer pairs, 23, 24 and 23 phyla respectively were ampli-

fied. All of the phyla are the same except for two which are different; Methanobacteria for

23S rRNA and Verrucomicrobia for 16S 2. However, these two phyla are not important

as only one Methanobacteria species has been found thus far in the oral microbiome and

no Verrucomicrobia species. Figure 4.7 shows the relative abundance of the top five phyla

commonly found in saliva. The proportions of the top five phyla for 16S 1, 16S 2 and 23S

rRNA are about the same, indicating that at the phylum level of classification only one

of these three pairs of primers is required.
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Figure 4.7: Relative abundance of the top five phyla commonly found in saliva by
primer pair - 16S 1 corresponds to primer pair 783F-878R, 16S 2 to 1097F-1175R, rpoB1 1
to 130F-220R and rpoB1 2 to 340F2-439R.

All rpoB primer pairs amplify a less diverse range of phyla, however this is expected as

the primers were designed to be more specific. Both rpoB1 primer pairs were designed to

principally target Streptococcus, a Firmicutes. rpoB1 2 amplifies only Firmicutes whereas

rpoB1 2 amplifies mainly Firmicutes with a small amount of Proteobacteria. rpoB1 1 is

more useful as it amplifies a slightly more diverse range of bacteria compared to rpoB1 2.

rpoB2 amplifies mainly Proteobacteria with a small proportion of Actinobacteria. This

shows the benefit of targeting two different regions of rpoB. These results concern all of

the possible bacteria amplified by the primers however, the proportions will differ when
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amplifying saliva as not all bacteria are found in saliva. The principle two phyla Pro-

teobacteria and Firmicutes are the same for both the whole database and saliva samples

indicating that all the primers would be suitable for analysing the bacterial composition

of saliva.

The genera found by virtual simulation were then compared with the genera from the

HOMD to see how many could be found in the oral microbiome (see Table 4.3). For

both 16S rRNA primer pairs and 23S rRNA the simulation produced between 350 and

400 genera of which around 70 were found in HOMD. Most of them are the same for the

three primer pairs indicating that only one pair is required. When the number of genera

found in common with HOMD is compared to the total number of genera in HOMD the

‘ % in common ’ increases to around 50%. This shows that whilst the primers amplify

many more genera than those found in the oral cavity, one set of primers alone can amplify

half of the genera present in the oral cavity. Based on this percentage 16S 1 (783F-878R)

would amplify the most oral specific genera. The number of genera amplified by the rpoB

primers is a lot lower and therefore the ‘ % in common with all HOMD genera ’ is very

low, all under 5%. As stated above these primers were designed to target specific genera

and hence will not amplify as many species as 16S or 23S rRNA. RpoB1 2 (340F2-439R)

primer pair only amplified one genus, Streptococcus, however it was designed to do so.

Whereas, rpoB1 1 (130F-220R) which was designed in the same way, amplified 11 genera

of which 4 were found in HOMD. Of the 4 in common Streptococcus was the most abundant

indicating that this primer pair is still specific just not as specific as rpoB1 2. Concerning

rpoB2, the seven genera in common with HOMD are completely different to those found by

rpoB1 primers, confirming the benefit of targeting different regions of rpoB. By combining

one set of primers from a generic target (16S or 23S rRNA) with one or two sets of primers

targeting a more specific gene (rpoB) the bacterial composition of saliva can be analysed

to a level unattainable by one target alone.

50



4.3 Primer optimisation

Target
primers

no. in common
with HOMD/total
simulated genera

% in common with
HOMD/total sim-
ulated genera

% in common
with HOMD/total
HOMD genera

16s rRNA

783F-878R 73/398 18.3 50.3

1097F-1175R 66/350 18.9 45.5

23s rRNA

1831F-1924R 71/369 19.2 49

RpoB1

130F-220R 4/11 36.4 2.8

340F2-439R 1/1 100 0.7

RpoB2

340F-434R 7/21 33.3 4.8

Table 4.3: Comparison of simulated genera with Human Oral Microbiome
Database (HOMD) genera

4.3 Primer optimisation

The first phase of primer optimisation involved testing all primer pairs with two generic

species; Escherichia coli and Streptococcus mitis, to see whether they successfully amplified

the targeted regions. For 23S rRNA no band was visible on the gel, indicating that the

amplification of that target was unsuccessful, a positive control was run to verify that the

gel migration had been successful. As shown above, the taxa theoretically amplified by

16S rRNA and 23S rRNA are similar therefore, both targets are not required. As the

amplification of 23S rRNA was unsuccessful, it was removed from further optimisation.

However, had the theoretically amplified taxa been different then the 23S rRNA primers

would have been redesigned and optimised. All other primer pairs produced a band on

the gel around 100bp, which corresponds to the targeted region and therefore they were

all kept for further optimisation.

For the next stage of primer optimisation a temperature gradient was used to find out

the best annealing temperature for each primer pair (see section 3.2.4). Figures 4.8 and

4.9 show the resulting gels for each primer pair at every temperature point (A-F). The

optimum result as visualised on a gel is a single band corresponding to the target size,

in this case all targets are around 100bp. The more extra bands present the less specific

the amplification is. Non-specific amplification reduces the number of target sequences

amplified by using up some of the reagents in the mix which would otherwise be used to

amplify the target sequences. Therefore, at the end of the amplification process only some

of the DNA comes from the target sequence. Subsequently, if this sample was sequenced

directly there would be noise from the non-target sequences making it more difficult to
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select the target sequences. Therefore, it is important to optimise the primers to get the

most specific amplification possible.

Figures 4.8 and 4.9 show the amplification of Streptococcus mitis (odd numbers) and

Escherichia coli (even numbers) with all primer pairs. Figure 4.8A shows the amplification

result for the rpoB2 primer pair. For A1-F1 there is no band around 100bp indicating

that for this species these primers do not amplify the targeted region. However, for A2-

F2 there is a very visible band around 100bp, with a band growing in intensity at the

top as the annealing temperature decreases. This larger band corresponds to non-specific

amplification, therefore for this primer pair the chosen annealing temperature was 64.3 ◦C.

Figure 4.8A and B shows the amplification results for the rpoB1 2 primers. A3-F3 show

non-specific amplification with four bands visible for all but A3 and B3 as the latter

have high annealing temperatures which, in this case impede amplification. For C3-F3

a band is visible around 100bp however due to the amount of non-specific amplification

these primers are not ideal. This is corroborated by the results for A4-F4 which show no

bands around 100bp except for H4 which has a very faint band. The results for the other

rpoB1 primer pair (rpoB1 1) are presented in Figure 4.8B and C. For A5-F5 there is a

distinct band around 100bp, however as the temperature decreases the amount of non-

specific amplification increases with E5 and F5 showing bands between 900bp and 1500bp.

For A6-F6 a band around 100bp can only be seen for the lower temperatures (D6-F6),

however, as seen before with lower temperatures, non-specific amplification is observed.

The results for this primer pair are much better than the first pair, therefore this pair is

kept. The more intense a band is the higher the quantity of DNA associated with the

band. E5 shows the greatest intensity with no non-specific amplification therefore, 59.9 ◦C

is the chosen temperature for rpoB1. Figure 4.8C and Figure 4.9D and E show the results

for 16S rRNA 1, with A9-F9 being a repeat of A7-F7 and A8-F8 the repeat of A10-F10.

For the first set (A7-F7 and A9-F9) there is virtually no amplification with only a small

amount of non-specific amplification at the lower temperatures. Whereas, for the second

set (A8-F8 and A10-F10) there are lots of bands however most correspond to non-specific

amplification, therefore this primer pair is not optimal for this study. Figure 4.9E and 3F

show the results for the second 16S rRNA primer pair. For A11-E11 there are no bands

with F11 showing a very faint band around 100bp. For A12-C12 there are also no bands

however, D12-F12 all have a band around 100bp with F12 having the most intense band.

F12 shows a very small amount of non-specific amplification however, to ensure enough

sequences are amplified for sequencing, 56 ◦C is the chosen temperature.
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Figure 4.8: Acrylamide gels of the amplification of Streptococcus mitis and Es-
cherichia coli with rpoB2, rpoB1 2, rpoB1 1 and 16S 2 at different annealing
temperatures
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Figure 4.9: Acrylamide gels of the amplification of Streptococcus mitis and Es-
cherichia coli with 16S 2 and 16S 1 at different annealing temperatures
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The final stage of primer optimisation involved checking that the three chosen primer pairs;

rpoB1, rpoB2 and 16S rRNA (see table 4.4 for final primer sequences), could successfully

amplify the target regions from the saliva samples. Figure 4.10 shows the saliva samples

(A1, A2, B1 and B2) from experiment one (t1, t2) amplified using the final three primer

pairs. All samples show a band around 100bp which corresponds to the targeted region.

This band is least intense for rpoB2, this corresponds to the fact that there are a number of

mismatches in the primer binding site (see Figure 4.6) so less sequences will be amplified.

There is also a small amount of non-specific amplification. This does not pose too much

of a problem, as described in section 3.3.2.4 the pooled samples were separated on a gel

and the band corresponding to the target region excised, hence removing the non-specific

amplicons.

Figure 4.10: Acrylamide gel of the amplification of saliva samples with the final
primers - 16S rRNA corresponds to primer pair 783F-878R, rpoB1 to 130F-220R and rpoB2
to 340F-439R.

Gene Primer name Primer Sequence (5’ - 3’)

16S rRNA 783F AGGATTAGATACCCTGGTAG
878R CGTACTCCCCAGGCGG

rpoB1 130F GGACCTGGTGGTTTGAC
220R CGATGTTAGGTCCTTCAGG

rpoB2 340F GGACCAGAACAACCCG
434R GGGTGTCCGTCTCGAAC

Table 4.4: Final Primers - Overview of primers chosen for each gene target. Primer name
for 16S rRNA and rpoB2 corresponds to the E.coli positions and for rpoB1 corresponds to
S.bovis positions.
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5

Results - Characterisation of the

salivary microbiome

This chapter presents the results of the sequencing of all samples from both experiments

(t1, t2 and t3, t4). Subsequently, the analysis of the sequences is presented in terms of which

bacteria are present in which samples and which parameters were used to characterise the

bacteria.

5.1 Illumina sequencing results

The saliva microbiome composition of 2 individuals was explored at 4 different time points.

The samples were split into two sequencing runs with samples taken one month apart being

sequenced together. Therefore, each run contained two samples per individual making 4

samples in total, per run. Run one corresponds to experiment one and was was performed

one year before run two which corresponds to experiment two. This section presents the

raw data in terms of the number of sequences produced by each sequencing run along with

some basic sequence analysis.

In total, run one produced 193,221,302 reads and run two 201,692,619 reads. After quality

control, pairing and filtering 59,971,947 and 56,762,234 sequences respectively, were used

for analysis (sequences available in the European Nucleotide Archive under accession num-

ber PRJEB6052). Table 5.1 shows the summary statistics for both experiments broken

down by target. The number of sequences for rpoB2 is a lot lower than for rpoB1 and 16S

rRNA because, as mentioned in the previous chapter 4.1, the primers used have some base

pair differences and therefore do not bind to as many sequences. All sequences assigned

to the genera Homo or Pan were removed as these sequences are classed as contamination
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from human DNA or the corresponding bacteria has the same sequence as humans and

therefore the two cannot be differentiated. As both Homo and Pan genomes have been

very well studied the database contains many accurate sequences and therefore if a se-

quence corresponds to both, the alignment with Homo or Pan is likely to be selected first

due to the BLAST parameters used. As can be seen in table 5.1 the percent of contami-

nation from Homo or Pan is very low at around 1% and therefore does not really impact

the number of sequences available for analysis.

The percent unknown is calculated using all sequences where BLAST outputs a no hit.

For both rpoB targets this percentage is very low and for 16S rRNA is zero or very close

to zero. The percentage is lower for 16S rRNA as 16S rRNA is the standard target

for metagenomic analyses and therefore it has been better characterised than rpoB and

there are a lot more sequences in the database. However, the percent uncultured is very

high for 16S rRNA at around 67% for experiment one and 58% for experiment two. As

mentioned above 16S rRNA is the most common target used and therefore there are

a high number of sequences in the database which have no taxon assignment other than

uncultured bacterium/organism. With the arrival of high throughput sequencing bacterial

communities could be analysed to a greater depth by targeted sequencing of 16S rRNA.

Through rules for taxa delimitation using 16S rRNA (133) potential new species have

been discovered however, many of these have not been cultured and cannot be cultured,

making it difficult to prove their existence. This explains the high percent of uncultured

for 16S rRNA. As the same database was used for both experiments these percentages

remain consistent. The percent uncultured for both rpoB targets is very low, around 1%

for experiment one and 0.01% for experiment two. This is because rpoB has a higher

genetic resolution than 16S rRNA (152) meaning that universal primers cannot be used,

so one pair of primers amplifies less species but the species which are detected are well

defined so both the percent uncultured and unknown are very low.

58



5.1 Illumina sequencing results

T
a
rg

e
t

n
o
.

se
-

q
u

e
n

c
e
s

a
ft

e
r

fi
lt

e
ri

n
g

n
o
.

se
q
u

e
n

c
e
s

w
it

h
H
o
m
o

&
P
a
n

re
m

o
v
e
d

% H
o
m
o

&
P
a
n

%
u

n
-

k
n

o
w

n
% u

n
c
u

l-
tu

re
d

n
o
.

O
T

U
s

p
re

-
fi

lt
e
ri

n
g

n
o
.

O
T

U
s

n
o
.

d
if

-
fe

re
n
t

O
T

U
s

E
x
p

e
ri

m
e
n
t

1

rp
o
B

1
29

,6
9
3,

05
8

29
,5

60
,1

25
0.

44
8

0.
00

8
0.

08
4

72
,9

26
89

1
15

0

rp
o
B

2
8,

74
4
,6

86
8,

72
3,

85
4

0.
23

8
0.

00
1

0.
16

9
13

,7
42

14
2

34

1
6
S

rR
N

A
21

,5
3
4,

20
3

21
,2

70
,2

45
1.

22
6

0
66

.8
73

16
5,

58
7

19
62

84
7

E
x
p

e
ri

m
e
n
t

2

rp
o
B

1
17

,0
0
7,

92
4

16
,8

13
,6

42
1.

14
2

0.
34

9
0.

01
0

61
,7

32
14

52
18

7

rp
o
B

2
9,

14
9
,9

74
9,

09
9,

84
2

0.
54

8
1.

94
0

0.
00

2
28

,4
82

31
3

54

1
6
S

rR
N

A
30

,6
0
4,

33
6

30
,1

12
,8

06
1.

60
6

0.
00

1
58

.3
89

29
0,

91
1

46
65

13
07

T
a
b

le
5
.1

:
S

eq
u

en
ci

n
g

su
m

m
a
ry

st
a
ti

st
ic

s
fo

r
ex

p
er

im
en

ts
1

a
n

d
2

59



5. RESULTS - CHARACTERISATION OF THE SALIVARY
MICROBIOME

5.2 OTU count

Table 5.1 shows species-level OTU counts at different stages. The number of OTUs cor-

responds to the number outputted by the clustering algorithm. As described in section

3.4.5 any clusters containing less than twenty sequences were filtered out to remove the

majority of sequencing errors. As can be seen in table 5.1 the number of OTUs pre-

filtering is significantly greater than the number post filtering with about 99% of OTUs

being filtered out. This does not mean that 99% of the data consists of sequencing errors,

however distinguishing between sequencing errors and rare OTUs is extremely difficult.

As stated above the percent of uncultured for 16S rRNA is very high and this corresponds

to the much higher number of OTUs found for this target. The number of different OTUs

is calculated by combining any OTUs with identical taxon name and Table 5.1 shows that

the number of different OTUs is a lot lower than the number of OTUs. For 16S rRNA

this number is not as low as it could be due to each unknown bacterium/organism having

a different number and therefore none of the unknowns can be combined. Combining the

OTUs enables a more accurate estimation of abundance per OTU, a feature which is used

in downstream analysis for separating individuals.

Tables 5.2, 5.3 and 5.4 show the number of OTUs found in each sample, along with the

percent in common between firstly, both samples from the same individual from each

experiment and secondly, all samples from one experiment, for rpoB1, rpoB2 and 16S

rRNA, respectively. For an OTU to be classed as in common between all samples from

one experiment it must appear in at least one sample from each individual (e.g. A1 and

B1). For the ‘ % OTUs in common ’ between all samples from one individual, to be classed

as in common an OTU must be present in at least one sample per experiment (e.g. A1

and A3 not A1 and A2). The number of different OTUs is consistent between samples in

one experiment for all targets, with all samples in the the second experiment having more.

rpoB2 contains the least with between 20 and 48 OTUs, rpoB1 is second with 145 to 185

OTUs and 16S rRNA has, by far, the most with between 793 and 1291. This correlates

with the overall OTU count per target presented in Table 5.6. For rpoB1 97% of OTUs

are the same between samples from the same individual for experiment one and about

94% for experiment two (see Table 5.2). About 97% of OTUs are in common between all

samples in each experiment meaning that the differences between individuals are due to

variation in abundances of bacteria and not different individuals having different bacteria.

For rpoB2 these percentages are lower (see Table 5.3). For experiment one, about 73% are

in common between samples from the same individual and 68% between all samples. For

experiment two, about 90% are in common between samples from the same individual and
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78% between all samples. The lower percentage in common between all samples indicates

that some of the differences between individuals comes from different individuals having

different bacteria. For 16S rRNA the percentages are similar to rpoB1 (see Table 5.4),

indicating that the differences between individuals are due to different abundances of the

same bacteria. The above tables demonstrate that samples sequenced in the same run

have very similar populations. Table 5.5 shows the ‘ % OTUs in common ’ between all

samples from each individual separately. It can be seen that the ‘ % in common ’ is a lot

lower and comparable to the ‘ % OTUs in common ’ per target for all samples combined,

see table 5.6. This implies that in terms of OTUs present, both individuals have very

similar populations. When the OTUs in common with all samples are compared to those

in common in each individual they are nearly all the same. For 16S rRNA there is one

species per individual which is different. For rpoB1 all of the species in common are the

same and for rpoB2 there are two species per individual which are different, see Table 5.5

for the corresponding percentages. This reiterates the idea that inter-individual variation

comes from differences in abundances of bacteria rather than biodiversity.

Sample Different
OTUs

% OTUs in
common 1

% OTUs in
common 2

Experiment 1

A1 145

A2 147 97

B1 149

B2 144 97 98

Experiment 2

A3 182

A4 185 97

B3 169

B4 171 91 95

Table 5.2: Comparison of species-level OTUs between all samples for rpoB1 -
% OTUs in common 1 describes the number of OTUs in common between the two samples
from the same individual from one experiment (e.g. A1 and A2) and % OTUs in common 2
describes the number of OTUs in common between all the samples from one experiment.
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Sample Different
OTUs

% OTUs in
common 1

% OTUs in
common 2

Experiment 1

A1 20

A2 23 72

B1 25

B2 29 75 68

Experiment 2

A3 46

A4 44 88

B3 44

B4 48 92 78

Table 5.3: Comparison of species-level OTUs between all samples for rpoB2 -
% OTUs in common 1 describes the number of OTUs in common between the two samples
from the same individual from one experiment (e.g. A1 and A2) and % OTUs in common 2
describes the number of OTUs in common between all the samples from one experiment.

Sample Different
OTUs

% OTUs in
common 1

% OTUs in
common 2

Experiment 1

A1 810

A2 793 94

B1 839

B2 828 97 98

Experiment 2

A3 1273

A4 1267 97

B3 1291

B4 1283 99 98

Table 5.4: Comparison of species-level OTUs between all samples for 16S rRNA
- % OTUs in common 1 describes the number of OTUs in common between the two samples
from the same individual from one experiment (e.g. A1 and A2) and % OTUs in common 2
describes the number of OTUs in common between all the samples from one experiment.

% OTUs in
common

Individual rpoB1 rpoB2 16S rRNA

A 50 26 37

B 52 25 38

A+B 100 89 99.5

Table 5.5: Comparison of species-level OTUs between individuals for all targets -
the percentages for A+B combined refers to the percent OTUs in common between those in
common for each individual separately.
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5.2.1 Both experiments combined

By combining the two experiments a number of species which are not in common between

the two experiments are lost. By removing these species the technique remains conser-

vative. It is possible that some of these species are real however, some of them could

be sequencing artefacts so to be sure to only include real and present species those not

found in both experiments were removed. The chance of a species being observed in both

samples from an individual and then not at all in the other two samples is unlikely, one

would expect it to be present in at least one of the other two samples. However, it is

not impossible as it could be a transient species detected on a short term basis due to a

particular lifestyle habit. Even less likely is both samples from both individuals having a

species in common and then that species not being present in either of their samples in the

second experiment. Table 5.6 shows the comparison of species-level OTU count between

the two experiments. Systematically experiment two has more OTUs than experiment

one, however the proportions of each target remains the same. For rpoB2 and 16S rRNA

about one third of the OTUs are in common between the two experiments whereas for

rpoB1 this figure is higher at 50%. These percentages seem quite low indicating that many

OTUs are not detected in both experiments. However, when looking at the percentage of

sequences allocated to ‘ OTUs in common between both experiments ’ (see table 5.6), the

values are a lot larger. In fact, nearly all of the sequences are assigned to OTUs found

in both experiments. This indicates that the OTUs not in common most likely corre-

spond to rare taxa which are harder to sequence and therefore, are not detected in both

experiments.

Target OTUs
exp 1

OTUs
exp 2

OTUs in
common

% OTUs in
common

Average % sequence
allocation in com-
mon

rpoB1 150 187 113 50 99.40

rpoB2 34 54 19 28 99.48

16S rRNA 847 1307 590 38 88.42

Table 5.6: Comparison of species-level OTUs between experiments for all targets
- (exp = experiment), the average % sequence allocation in common describes the percentage
of sequences allocated to OTUs in common between both experiments.

5.3 Microbiome composition

The use of three targets enables the microbiome composition to be analysed to a greater

depth. Figure 5.1 shows the proportions of the top five phyla per individual, per target.
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The first thing to note is that, at the phylum level, both individuals have very similar

abundances. However, this is logical as phylum is very high in taxonomic classification

(see Figure 3.2) and therefore any differences are more likely to be at lower levels of classi-

fication, such as species. It can be seen that for both rpoB1 and 16S Firmicutes is the most

common phylum constituting over 90% and 70% of the population respectively. For rpoB2

the population is composed of over 90% Actinobacteria. Previous studies (71, 74, 84) have

shown that the most common phlya found in saliva are: Firmicutes, Proteobacteria, Acti-

nobacteria, Bacteroidetes and Fusobacteria and this study concurs with these findings,

however the abundances differ slightly. Stahringer et al. analysed 264 saliva samples

and showed that bacteria abundances varied greatly, this study falls within the observed

variation. In the same study they defined a genus-level core microbiome containing eight

genera (74) (see section 1.2 for definition of core microbiome). By combining three targets

in this study, through merging of abundance tables, a genus-level core microbiome of 58

genera was observed, see table 5.7 for the breakdown of genera per target. This high

number of genera covers about 95% of the population of each individual implying that

most differences come from the species/strain level.
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Figure 5.1: Relative abundance of the top five phyla per individual per target
for both experiments combined - A and B are different individuals and the target is in
brackets.

The addition of rpoB enables certain genera to be analysed down to the species and even

strain level. Specifically, with 16S Streptococcus can be detected at the genus level and
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occasionally the species level (9 different OTUs) however, with rpoB it can be detected

to the species/strain level (53 different OTUs) enabling a deeper characterisation of this

part of the saliva microbiome (see appendix A for list of species/strains per target (section

8.1)). This is important as Streptococcus makes up about 80% of Firmicutes, the most

abundant phylum.

16S rRNA RpoB 1 RpoB 2

Actinomyces Abiotrophia Actinobacillus
Aerococcus Acinetobacter Arthrobacter

Anaerovorax Actinobacillus B ifidobacterium
Arthrobacter Aeromonas E scherichia
Atopobium Arthrobacter Rothia

Bacillus Atopobium
Brevibacterium Bacteroides
C ampylobacter Bartonella

C itricoccus Enterococcus
C lostridium Exiguobacterium

C orynebacterium Gallibacterium
Dermabacter H aemophilus

D ietzia Lactobacillus
Enteroactinococcus Lactococcus

Enterococcus Leadbetterella
Eubacterium Listeria

K ocuria M arinomonas
Lactobacillus M ethylotenera
M icrococcus N eisseria
M obiluncus Paenibacillus

N egativicoccus Pasteurella
N eisseria Pedobacter

N ocardiopsis Prevotella
Pelotomaculum Pseudomonas

Peptostreptococcus Rothia
Prevotella Saccharophagus

Propionibacterium Shewanella
Rothia S taphylococcus

Selenomonas S treptococcus
S treptococcus V eillonella

T reponema V ibrio
T richococcus W eissella

Table 5.7: Core genera per target - list of core genera per target in alphabetical order.

Table 5.8 shows the most common genera found in all samples along with the percent

abundance each genus represents per target. For rpoB1, Streptococcus is the most abun-

dant, confirming the results presented above in Figure 5.1 showing Firmicutes as the most

abundant phylum. As for 16S rRNA there are many more unclassified/uncultured or-
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ganisms than anything else and the second most common genus is Streptococcus. Both

rpoB1 (designed to target streptococci species) and 16S rRNA reveal that Streptococcus

is the most commonly detected genus in saliva. These results reiterate the advantage of

sequencing more than one target as without rpoB1, many of the streptococcus species

would remain hidden. For rpoB2 Rothia is the most abundant genus at 93%, moreover

it is barely detected by the other two targets (see annex for complete list of species and

abundances per target). As described in section 1.4, all of the above mentioned genera,

are commonly found in saliva and therefore these results agree with previously published

work (30, 70, 153). Even though there is a core microbiome of 58 genera, most of them are

in very low abundance with only a few genera making up the majority of the population.

The species varying most in abundance between individuals will be presented in the next

chapter.

rpoB1 rpoB2 16S rRNA

S treptococcus (75%) Rothia (93.13%) Unclassified (66.12%)

Lactobacillus (10.84%) Arthrobacter (5.43%) S treptococcus (22.85%)

Abiotrophia (7.55%) Arthrobacter (8.73%)

N eisseria (2.23%) Actinomyces (1.52%)

Saccharophagus (1.76%)

Prevotella (1.21%)

Table 5.8: Most common genera in all samples - this table shows the genera which
constitute about 99% of the population for each target, the average percentage, across all
samples, represented by each genus is in brackets.

5.4 Clustering threshold

Unlike previous studies the main aim of this thesis was to investigate whether the bacte-

ria found in saliva could be used to separate samples from different individuals and not

just characterise the microbiome. Different clustering thresholds, used with CD-HIT (see

section 3.6.2), were tested to see which one gave the best separation taking into account

analysis time (see spreadsheet ‘ clustering threshold ’ on accompanying CD for raw and

processed data). Figure 5.2 shows that as the percent identity1 increases so does the rel-

ative distance between the two individuals. The results for both rpoB targets are shown

in Figure 5.2A where the dashed line indicates the chosen threshold of 95%. In Figure

5.2B the dashed line highlights the chosen threshold for 16S rRNA of 97%. These per-

centages correspond to previously published studies for species level characterisation for

rpoB and 16S rRNA, respectively (134, 154). For both targets 100% identity provides

1the percent similarity between DNA sequences required to combine them as one cluster
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the best separation however the analysis time, for 16S rRNA especially, is very long and

therefore it is not the most efficient solution. The majority of the analysis time is taken

up by the clustering and BLAST stages. The higher the percent identity the longer the

analysis takes. At 100% identity for two sequences to be placed in the same cluster every

base pair must match. With species level characterisation for rpoB and 16S rRNA being

95% and 97% respectively, 100% identity would correspond to strain level, making many

more clusters. The more clusters there are the longer BLAST takes as there are more

representative sequences to compare to the database. The analysis of 16S rRNA at 100%

identity took about 3 weeks whereas for at 97% identity it took about 2 weeks. For rpoB

the analysis time is a lot less (hours-days) as there are fewer sequences, however for rpoB1

at 100% identity the analysis still took about 6 days, whereas at 95% it took about 4 days.

As strain level identification is not necessary for the separation of individuals neither is a

clustering threshold of 100%. In order to make this technique as time efficient as possible

the clustering threshold used is the lowest one which enables separation of individuals

whilst following standard taxonomic classification rules.
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A

B

Figure 5.2: Comparison of clustering thresholds for the separation of individuals
- The percent identity is that used for clustering the sequences into OTUs with CD-HIT.
The relative distance corresponds to the distance between two individuals calculated using
the Euclidean distance and the Ward method of hierarchical clustering, on the normalised
and logged species abundance. Only species with a p-value <0.1 from a t-test (a Bayesian
analysis) between the samples from each individual or a BF <1 were used. A = both rpoB
targets and B = 16S rRNA. The dashed line highlights the chosen threshold.
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6

Results - Comparison of two

salivary microbiomes

This chapter describes how the composition of the salivary microbiome, as presented in

the previous chapter 5.3, can be used to separate samples from one individual from those

from a second individual. As detailed in the materials and methods chapter 3 the data

was transformed in order to analyse it and reveal the potential differences between the two

individuals. Section 5.2.1 describes how by combining both experiments a certain number

of species are lost, however this is necessary to avoid including any sequencing errors. In

this chapter, when all eight samples are being compared it is implicit that only the species

in common with both experiments are used.

6.1 Normalisation

As two different sequencing runs were used to analyse the samples, the data from both

were normalised to make them comparable. As can be seen from the count tables found

in the supplementary files (https://independent.academia.edu/SarahLeake/Papers), the

counts between sequencing runs for the same species can differ a lot, indicating that it is

necessary to normalise the data between runs. If normalisation is not used then differences

seen may only be due to differences between the sequencing runs and not real differences

between individuals. The choice of normalisation algorithm is important, as described in

section 3.5.1 the structure of the data has an impact on which algorithm is used. In this

case a few species have high abundance with most having very low abundance. Table 6.1

shows the number of high abundance species compared with the total number of species

in common between both experiments and what percentage their sequences represent of
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the total in common. Species were classed as high abundant if there were more than 200

occurrences in everyone of the eight samples. It can be seen that for both rpoB targets

about 16% of the species have a high abundance and they account for about 98% of the

sequences assigned to species in common between both experiments. For 16S rRNA only

about 6% of the species have high abundance however they account for about 97% of the

assigned sequences. This data demonstrates why a normalisation algorithm, like DESeq

(141), which takes into account the uneven distribution of sequences is important.

Target no. high abundance
species/total in common

% high abundance
species sequences

RpoB1 18/113 98

RpoB2 3/19 99

16S rRNA 38/590 97

Table 6.1: Comparison of high abundance species between targets - the percent of
high abundance species sequences refers to the percentage of sequences assigned to a high
abundant species out of all of the assigned sequences for species in common between both
experiments.

6.2 Data filtering

After the data was normalised and log transformed (see section 3.5.2) it was filtered to

first remove any sequences assigned to the genera Homo or Pan (see section 5.1) and

secondly to keep only the OTUs which were calculated as being significantly different

between the two individuals. As described in section 3.5.3 the data was filtered using

two different approaches to show that both approaches produce the same results, ensuring

the robustness of the analysis. Figure 6.1 shows the relative distance calculated between

samples from each experiment separately for both unfiltered and filtered data per target.

It can be seen that the relative distance is higher for the filtered data than the unfiltered

data. The larger the relative distance the better the separation between individuals, hence

demonstrating the advantage of filtering the data. It is also worth noting that the pattern

is the same for both experiments, so even when the number of sequences differs the effect

of filtering remains the same.
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Figure 6.1: Comparison of unfiltered and filtered data for both experiments per
target - the relative distance corresponds to the distance between two individuals calculated
using the Euclidean distance and the Ward method of hierarchical clustering, on the normalised
and logged species abundance. For the filtered samples only species with a p-value <0.1 from
a t-test between the samples from each individual or a BF <1 were used.
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When combining the two experiments, as mentioned previously in section 5.2.1, a number

of species are lost as only those in common to both experiments are kept. Due to this, if the

data is left unfiltered then for rpoB1 and 16S rRNA the samples group by experiment and

not by individual (see Figure 6.2A and C) as there are enough experiment specific species

that the sample grouping is skewed. For rpoB2 the samples still group by individual (see

Figure 6.2B) however, the separation between individuals is not as large as for the filtered

data. All the data analysis in the rest of this chapter is performed on the filtered data

only.
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A

B

C

Figure 6.2: Hierarchical clustering of both experiments combined using unfiltered
data - the relative distance corresponds to the distance between two individuals (A and B)
calculated using the Euclidean distance and the Ward method of hierarchical clustering, on
the normalised and logged species abundance. Only species with a p-value <0.01 from a t-test
between the samples from each individual or a BF <1 were used.
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6.2.1 Choice of p-value

As described in section 3.5.3 and under assumptions expressed there, the data was filtered

by performing a t-test between each species and then ordering the data by p-value. The

BF values were also calculated, however the purpose of this was to corroborate the p-

values. Therefore, only the choice of p-value is presented here. The next step was to

decide which p-value separates the samples best. Table 6.2 shows the relative distance,

as calculated through hierarchical clustering, between samples from both experiments

individually and then combined at different p-values. For the individual experiments as

the p-value decreases so does the relative distance, therefore a p-value <0.1 produces the

greatest separation between individuals. Only 16S rRNA has distances for all p-values,

this is because the other two target genes are more specific so fewer OTUs are detected

(see Table 6.3), therefore as the data is filtered less OTUs are available and the chance

of one of the few being highly significant is low. Also, with such a low number of OTUs

some fall into the same category, for example, for rpoB2 in experiment two the distances

for p-values <0.05 and <0.01 are the same because between the two p-values no OTUs are

filtered out. When the two experiments are combined the best p-value for rpoB1 and 16S

rRNA is <0.01 and <0.05 for rpoB2. By combining the experiments eight samples are

being clustered instead of four therefore OTUs which are more significant produce a better

separation. However, when filtered at a too high significance the distance decreases as not

enough OTUs are included. The p-value chosen for the analysis of individual experiments

is <0.1 and <0.01 for the combined experiments. When the individual experiments are

compared to the combined experiments both a p-value of <0.1 and <0.01 will be presented

for the combined experiments.
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Target/p-value <0.1 <0.05 <0.01 <0.005 <0.001 <0.0005

Experiment 1

RpoB1 21.53 19.94 10.69 8.78 4.20 -

RpoB2 15.26 15.06 13.70 8.05 - -

16S rRNA 44.06 40.94 27.20 21.47 12.72 12.72

Experiment 2

RpoB1 25.36 22.02 14.76 11.47 9.29 9.07

RpoB2 22.59 22.24 14.83 14.83 - -

16S rRNA 51.25 48.24 35.57 26.68 13.51 9.13

Combined

RpoB1 22.44 23.79 25.46 25.38 22.12 20.65

RpoB2 15.13 15.96 13.81 13.81 9.30 9.30

16S rRNA 54.22 56.20 57.36 55.83 51.75 49.40

Table 6.2: Comparison of relative distance between individuals for all targets for
experiment 1, experiment 2 and both experiments combined at different t-test
p-values - (dashes mean that there were no significant species under that p-value).

6.3 Hierarchical clustering method

The aim of this study was to see whether the bacteria found in saliva could be used to

separate samples from two individuals. In order to achieve this the abundances of each

species per sample were clustered using hierarchical clustering to see how the samples

group together. As the aim is to group samples coming from the same individual to-

gether, the clustering method used should reflect this. Section 3.5.3.1 lists the clustering

methods available for hierarchical clustering. Initially two different methods were tested;

complete linkage and Ward, as they both find similar clusters. Figure 6.3 shows the rela-

tive distance calculated between samples from each experiment separately using both the

complete linkage (comp) and Ward methods of clustering. The relative distance for the

Ward method is always larger than for complete linkage for all targets and both experi-

ments. Furthermore, the difference between the two methods is fairly substantial with the

Ward method producing distances about 50% larger than complete linkage for all targets.

Therefore, the Ward method of hierarchical clustering is the chosen method for the data

analysis in this thesis.
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Figure 6.3: Comparison of two different hierarchical clustering methods - the
relative distance corresponds to the distance between two individuals calculated using the
Euclidean distance and either the complete linkage (comp) or Ward method of hierarchical
clustering, on the normalised and logged species abundance. Only species with a p-value <0.1
from a t-test between the samples from each individual or a BF <1 were used.
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6.4 Clustering of individual experiments

Before comparing the two experiments combined, the samples from each individual exper-

iment were clustered separately. This was important in order to show that it was possible

to initially group samples from the same individual together, if this was not the case,

then combining them would very unlikely provide better results. Figure 6.4 shows the

hierarchical clustering of the samples from each experiment separately, per target. For

all targets, samples from the same individual group together and are separated from the

other individual. However, each target separates the samples differently with 16S rRNA

providing the greatest separation with an average total relative distance of 46 compared

to 23 and 19 for rpoB1 and rpoB2, respectively. This correlates to the number of OTUs

available for analysis per target with 16S rRNA having the most and rpoB2 the least (see

section 5.2). It is also worth noting that the relative distance is larger for all targets in

experiment two (see Figure 6.4B, D and C) than experiment one, this can also be ex-

plained by the number of OTUs available for analysis, with experiment two having more

(see Table 6.3). Table 6.3 also shows that of all the OTUs that pass the filtering stages

only about 25% and 32% for experiment one and experiment two respectively, are classed

as significant. For both rpoB1 and 16S rRNA the significant OTUs account for about

16% of the total number of sequences after filtering, this figure drops to 1% for rpoB2.

This indicates that the majority of the OTUs are similar between individuals and that the

significant OTUs are in low abundance.

The relative distance between samples from the same individual is not equal to zero due

to intra-individual variation. This variation can come from a number of factors, of which

principally, diet and daily routine are the main contributors. As described in section 3.1

the participants brushed their teeth in the morning and did not consume any food one

hour prior to sampling. However, this did not stop them from eating after they brushed

their teeth and before the one hour prior to sampling. Therefore, on the days of sampling

they could have eaten different foods and/or had contact with different environments.

In terms of the applicability of this technique it is important to keep the samples as

real as possible. If everything was controlled then it would be hard to draw conclusions

concerning the natural variation of samples. With the small sample size available concrete

conclusions cannot be drawn regarding intra-individual variation, however all of these

samples show that the intra-individual variation is much lower than the inter-individual

variation. For rpoB1 (Figure 6.4A and B) the intra-individual variation is about 18% of

the inter-individual variation, this figure is around 11% for rpoB2 (Figure 6.4C and D)

and 17% for 16S rRNA (Figure 6.4E and F). Furthermore, the intra-individual variation
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is about the same for both individuals indicating that the variation within a person is

stable over time. For all targets the intra-individual variation is less than 20% of the

inter-individual variation.

Target no. signifi-
cant OTUs

% significant
OTUs

Average % sequence
allocation of signifi-
cant OTUs

Experiment 1

RpoB1 40 26.67 14.71

RpoB2 8 23.53 0.19

16S rRNA 190 22.43 14.61

Experiment 2

RpoB1 72 38.50 13.54

RpoB2 15 27.78 1.78

16S rRNA 370 28.31 22.83

Combined

RpoB1 19 / 8 16.81 / 7.08 2.38 / 1.61

RpoB2 10 / 2 50 / 10 0.30 / 0.1

16S rRNA 159 / 68 26.95 / 11.53 20.66 / 5.95

Table 6.3: Comparison of significant OTUs between all targets for experiment
1, experiment 2 and both experiments combined - significant OTUs are those with
a p-value <0.1 from a t-test between the samples from each individual or BF <1. The last
column shows the % of sequences assigned to significant OTUs out of the total number of
sequences used for analysis after filtering. For the experiments combined species significant
at a p-value <0.01 are also presented (the number after the /).
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A B

C D

E F

Figure 6.4: Hierarchical clustering for each target for both experiments individ-
ually - the relative distance corresponds to the distance between two individuals (A and B)
calculated using the Euclidean distance and the Ward method of hierarchical clustering, on
the normalised and logged species abundance. Only species with a p-value <0.1 from a t-test
between the samples from each individual or a BF <1 were used. Exp1 = experiment 1 and
exp2 = experiment 2.
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6.5 Clustering of combined experiments

Section 6.4 demonstrates that when each experiment is analysed separately, samples from

one individual can be separated from those of another. The next step is to see whether,

once the two experiments have been combined, this separation is still possible. Figure

6.5 shows the hierarchical clustering of the samples from both experiments combined, per

target. For all targets, samples from the same individual group together and are separated

from the other individual. As seen for the clustering of the individual experiments each

target separates the samples with varying distances (see Table 6.2). 16S rRNA provides the

greatest separation with total relative distance of 57 compared to 25 and 14 for rpoB1 and

rpoB2, respectively. When these values are compared to those from the single experiments,

for rpoB2, they are lower, however for rpoB1 and 16S rRNA the values are higher. This

could be because rpoB1 and 16S rRNA target more species hence, the number of species

found is greater and therefore, more are available for clustering the samples (see Table

6.3). Table 6.3 shows that the number of significant OTUs for the combined experiments

is lower than for each experiment individually. By combining the two experiments and

filtering out only those in common to both some of the significant OTUs in the individual

experiments could be filtered out. Therefore, less OTUs are available for clustering. The

% significant OTUs changes slightly for the combined data. For rpoB1 the value is lower

than for either experiment individually implying that by combining the samples some of

the significant taxa are lost. Whereas, for rpoB2 the value nearly doubles to 50% for

a p-value of <0.1, indicating that some of the lost taxa are not significant and more of

the significant taxa are kept. However, at a p-value of <0.01 this percentage drops to 10

indicating that in comparison with the individual experiments there are fewer significant

OTUs. For 16S rRNA the value remains similar at a p-value of <0.1, however these

values decrease at a p-value of <0.01 as less OTUs are kept. Concerning the average

% sequence allocation of the significant OTUs for both rpoB1 and rpoB2 the values are

lower than for the individual experiments at 2.4% and 0.3% respectively. This reiterates

the above results that the significant OTUs are in low abundance. For 16S rRNA the

value remains the same implying that the significant OTUs represent the same proportion

of the population.

To further investigate the effect of combining the experiments the significant OTUs from

each individual experiment were compared to those from the two experiments combined.

Table 6.4 shows that per experiment under 50% of the significant OTUs are still significant

when the two experiments are combined. However, when the significant OTUs in common

to each experiment are summed together and compared with the significant OTUs from
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the two experiments combined, at a p-value of <0.1, this percentage increases to around

70% for both rpoB1 and 16S rRNA and 50% for rpoB2. The main reason for this is that

an OTU might be classed as significant in an individual experiment but when combined

with the second experiment is no longer significant and vice versa. Additionally, when the

experiments are combined the total number of OTUs decreases (see Table 5.6) in compar-

ison to the individual experiments and OTUs which are found in one experiment may not

be present in both. Furthermore, there are some OTUs which are not classed as significant

in either of the individual experiments but when the two experiments are combined are

classed as significant. For example, for rpoB1, at a p-value of <0.01, 0% of the significant

OTUs from both experiments are in common with the combined experiments, indicating

that the significant OTUs for the combined experiments are different to those for the in-

dividual experiments. This explains why when the significant OTUs from each individual

experiment are combined the % in common is not 100.

When the significant OTUs are compared at a p-value of <0.01 all the percentages de-

crease as the number of significant OTUs in common decreases, this is because for the

individual experiments a p-value of <0.01 removes too many OTUs (see section 6.2.1).

By increasing the significance there is even more chance that OTUs found to be signifi-

cant in an individual experiment will not be as significant when the two experiments are

combined. However, when the OTUs significant at a p-value <0.1 from the individual

experiments are compared to OTUs significant at a p-value <0.01 from both experiments

combined the percentage of significant OTUs from both experiments in common with the

experiments combined increases to between 75% and 100% (see Table 6.4. This implies

that a large number of OTUs are in fact significant to both individual and combined

experiments.

As described above for the individual experiments the relative distance between samples

from the same individual is not zero due to intra-individual variation. With the com-

bined experiments this variation increases for rpoB2 but remains smaller than the inter-

individual variation and decreases for rpoB1 and 16S rRNA. For rpoB1 (Figure 6.5A)

the intra-individual variation is about 15% of the inter-individual variation, this value is

around 30% for rpoB2 (Figure 6.5B) and 14% for 16S rRNA (Figure 6.5C). Furthermore,

the intra-individual variation differs slightly between individuals and targets in terms of

separation of samples from the same individual. It could be expected that samples se-

quenced in the same run would be grouped together as they were subjected to identical

conditions. This is the case for both individuals with rpoB2 but only for one individual

for rpoB1 and 16S rRNA. This implies that some of the differences transcend the two
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6. RESULTS - COMPARISON OF TWO SALIVARY MICROBIOMES

experiments and have more of an effect than the sequencing conditions. As the data has

been filtered and only those OTUs in common to both experiments are kept then it is also

possible that the samples from the same individual group arbitrarily. The most important

point to make is that all the samples from one individual group together and the amount of

intra-individual variation is comparable between individuals, implying that the variation

within a person is stable over time. rpoB2 has the smallest difference between inter and

intra-individual variation making it the least suitable target gene. Both rpoB1 and 16S

rRNA have intra-individual variation of less than 20% correlating with the intra-individual

variation found in the individual experiments (see section 6.4).
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6.5 Clustering of combined experiments

A

B

C

Figure 6.5: Hierarchical clustering of both experiments combined, per target - the
relative distance corresponds to the distance between two individuals (A and B) calculated
using the Euclidean distance and the Ward method of hierarchical clustering, on the normalised
and logged species abundance. Only species with a p-value <0.01 from a t-test between the
samples from each individual or a BF <1 were used.
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6.5 Clustering of combined experiments

6.5.1 Updated database

All BLAST analyses for this thesis were performed using the same database to standardise

the analysis between experiments and avoid any differences being put down to the use of

more than one database. However, the real world application of this technique must

be taken into consideration. Realistically databases get updated and therefore for this

technique to be usable it is required to function with different databases. For example,

if a suspect reference sample was analysed for one case and subsequently this person was

implicated in another case then it is highly probable that the reference sample would

be analysed with a different database to a trace analysed in the second case. Therefore

the technique is required to be robust enough to link samples from the same individual

analysed with different databases. To test the robustness of this technique, experiment

one was re-analysed using the most up-to-date nucleotide database available.

Table 6.5 shows the comparison of species-level OTUs for experiment one analysed with

both the old database (database 1) and the new database (database 2), (see supplementary

spreadsheet ‘new database ’ (https://independent.academia.edu/SarahLeake/Papers) for

raw and processed data). For both rpoB2 and 16S rRNA the total number of sequences

assigned to a taxon are the same and for rpoB1 the difference is negligible indicating that

using a newer database does not increase the number of sequences assigned to a taxon,

however in the future this could change. At the species-level a high proportion of the

OTUs have identical species assignment and abundances for all targets (see Table 6.5).

However, inevitably a certain number of the OTUs are different. This is most apparent

for 16S rRNA as these sequences are the most likely ones to change and be updated and

therefore OTUs which were assigned to one taxon in the first database could be assigned

to a different one in the new database. This can also be seen in the total OTU count

where for 16S rRNA there is a decrease of 45 (see Table 6.5), which is likely due to some

sequences in the first database being reassigned to the same taxon, hence decreasing the

total number of OTUs. For both rpoB targets the numbers are stable indicating that

there are few differences between the two databases.

To compare how well the databases separate the samples they were clustered using the

Ward method of hierarchical clustering (see section 3.5.3.1) and the relative distances

between individuals are shown in table 6.5. For both rpoB targets the distance is identical

and for 16S rRNA the difference is very small, implying that changing database does not

affect the ability of this method to separate individuals. To further check this, experiment

one analysed with the up-to-date database was combined with experiment two analysed

with the old database and hierarchical clustering performed (see Figure 6.6). This also
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6. RESULTS - COMPARISON OF TWO SALIVARY MICROBIOMES

emulates the real life situation mentionned above. The distances were compared to those

from the hierarchical clustering of both experiments analysed with the old database. For

both rpoB targets the relative distance between individuals (Figure 6.6A and B) is very

similar to the respective distance in the other analysis (Figure 6.6B and D), with the latter

providing slightly better separation. 16S rRNA follows the same pattern with the samples

analysed with the same database producing better separation (Figure 6.6E) however the

difference between the distances is larger. For all targets the intra-individual separation is

very similar indicating that changing the database has very little effect on how the samples

are separated.
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6. RESULTS - COMPARISON OF TWO SALIVARY MICROBIOMES

A B

C D

E F

Figure 6.6: Hierarchical clustering of all eight samples with different databases
for each target - A, C and E represent the clustering of experiment 1 analysed with the
new database and experiment 2 analysed with the old database. B, D and F represent the
clustering of both experiments with the old database. The relative distance corresponds to
the distance between two individuals calculated using the Euclidean distance and the Ward
method of hierarchical clustering, on the normalised and logged species abundance. Only
species with a p-value <0.01 from a t-test between the samples from each individual or a BF
<1 were used.
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6.5.2 Combination of target genes

Section 6.5 supports that when both experiments are combined and analysed together,

samples from one individual can be separated from those of another whilst maintaining

low intra-individual variation. The next thing to look at is whether this separation can be

improved by combining the target genes. Figure 6.7 shows the separation of individuals

in terms of relative distance, calculated by hierarchical clustering, for each target gene

individually and all permutations of combined target genes at different t-test p-values.

Different p-values were analysed to check whether by combining the target genes a dif-

ferent p-value produced the greatest separation. Firstly, a p-value of 0.01 provides the

greatest separation, justifying this choice of p-value for the combined experiments (see

section 6.2.1). rpoB2 and rpoB1 produce the smallest and second smallest relative dis-

tances, respectively, correlating with the number of significant OTUs per target (see Table

6.3). The combination of both rpoB target genes produces a greater separation than either

target gene individually however, the separation is still much lower than for 16S rRNA

alone or combined. The combination of all three target genes produces the greatest sep-

aration regardless of the p-value used to filter the data. However, the difference between

this and the combination of 16S rRNA with either rpoB target gene is not very big, im-

plying that the majority of the separation comes from 16S rRNA. This is confirmed by

16S rRNA alone which falls just below the combination of 16S rRNA with either rpoB

target genes.

From the hierarchical clustering (see Figure 6.8) the percent of intra-individual variation

can be calculated for each combination; all - 14.5% (Figure 6.8A), rpoB1 + 16S rRNA

- 14.2% (Figure 6.8B), rpoB2 + 16S rRNA - 14.9% (Figure 6.8C) and rpoB1 + rpoB2 -

16.9% (Figure 6.8D). The best separation is one which minimises intra-individual varia-

tion and maximises inter-individual variation. The smallest intra-individual variation is

acheived by combining rpoB1 with 16S rRNA, a combination which also produces the

second greatest inter-individual variation. For the combination of all target genes the

intra-individual variation is third highest indicating that the addition of rpoB2 increases

the intra-individual variation. These values must be interpreted with caution due to the

small sample number, however they can still give an indication of which combination of

target genes is the most effective at separating samples from different individuals.
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Figure 6.7: Hierarchical clustering of individual and combined target genes at
different t-test p-values used for data filtering - the relative distance corresponds to
the distance between two individuals calculated using the Euclidean distance and the Ward
method of hierarchical clustering, on the normalised and logged species abundance.
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6.6 Minimum sequences required

A B

C D

Figure 6.8: Hierarchical clustering for all combinations of target genes - the relative
distance corresponds to the distance between two individuals (A and B) calculated using the
Euclidean distance and the Ward method of hierarchical clustering, on the normalised and
logged species abundance. Only species with a p-value <0.01 from a t-test between the samples
from each individual or a BF <1 were used.

6.6 Minimum sequences required

This study used the HiSeq2000 to analyse the samples, a machine which can produce

over one billion reads, as at the outset of this study the number of sequences required to

separate two individuals was unknown. To calculate the minimum number of sequences

necessary the data from experiment one were randomly sub-sampled at different levels:

1000, 10000, 50000, 100000, 500000 and 1000000 sequences (see supplementary spreadsheet
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‘minimum sequences ’ (https://independent.academia.edu/SarahLeake/Papers) for raw

and processed data). The analysis was performed to the end (from OTU clustering to

hierarchical clustering) and the relative distances calculated between the samples at all

levels are shown in Figure 6.9. For rpoB2 and All there are no points before 50000 as

separation was not achieved, rpoB2 also produces the smallest separation. 16S rRNA

provides the best separation when looking at the targets individually. However, when 16S

rRNA and rpoB1 are combined the separation is improved. Combining all three targets

produces the best separation, however the addition of rpoB2 does not greatly improve the

separation except at 50000 sequences where the separation is significantly improved. This

correlates with the results presented above in section 6.5.2 confirming the best and most

efficient separation is achieved by combining 16S rRNA and rpoB1.
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Figure 6.9: Number of sequences required for sample separation - the relative dis-
tance corresponds to the distance between two individuals calculated using the Euclidean dis-
tance and the Ward method of hierarchical clustering, on the normalised and logged species
abundance. Only species with a p-value <0.1 from a t-test between the samples from each
individual or a BF < 1 were used.

Figure 6.9 suggests that to ensure the separation of individuals a minimum number of

sequences of 100,000 would be best. From this value it is possible to calculate how many
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6.6 Minimum sequences required

samples could be analysed in one sequencing run. This is important as the economic

value of a technique must be considered before it can be integrated into routine analysis.

The sequencer used for this study was the Hiseq 2000 which is a very high-throughput

machine producing up to two billion reads and taking around 10 days for one analysis.

This machine would not be suitable for a forensic laboratory due to both cost and time of

analysis. However, Illumina have produced a lower throughput benchtop sequencer called

the Miseq which produces on average 25 million reads after quality filtering. The run

time for a Miseq varies between 5 to 65 hours, which is significantly faster than the Hiseq,

making it more suitable for forensic applications.

no. target
genes

min no.
sequences

no. samples
analysed Hiseq

no. samples
analysed Miseq

1 100,000 595 106

2 200,000 297 53

3 300,000 198 35

1 500,000 119 21

2 1,000,000 59 10

3 1,500,000 39 7

Table 6.6: Comparison of potential number of samples analysed per number of
sequences for the Hiseq and Miseq

Table 6.6 compares the potential number of samples which could be analysed by both the

Hiseq and Miseq. For the type of sample/analysis performed in this study, on average,

the Hiseq produces 200 million reads. About 30% of reads are removed through quality

filtering leaving 140 million reads. As paired-end sequencing is used 2 reads = 1 sequence

therefore 140 million reads gets reduced to 70 million sequences. Due to read pairing and

barcode splitting a further 15% of reads are lost leaving 59.5 million sequences. By using

this as the starting value the potential number of samples which could be analysed can

be calculated (see Table 6.6). This number varies depending on how many targets are

analysed and the minimum number of sequences required. The same procedure is applied

to the Miseq producing a start value of 10.6 million sequences. As mentioned above the

combination of two targets, rpoB1 and 16S rRNA, provides the best results therefore,

with 100,000 sequences per target 53 samples could be analysed using the Miseq and 297

with the Hiseq. This shows that the Miseq is a realistic option for analysing forensic

samples. Even if a higher coverage of half a million sequences is required, with two

targets, 10 samples could be analysed, which is the equivalent of 5 traces and 5 reference

samples. For identification purposes this technique will only work with a reference sample

therefore, this needs to be taken into consideration when planning how many samples can

be sequenced together.
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Another application of this technique; providing intelligence (linking specific bacteria to

lifestyle traits), would be one reason for increasing the coverage as more species would be

obtained, increasing the information provided by each sample. If the coverage is increased

too high then not enough samples could be sequenced in one run making the technique

less affordable. Table 6.7 shows the number of OTUs per target at 50,000, 100,000 and

500,000 sequences. As the number of sequences increases as does the number of OTUs and

the number of significant OTUs. For intelligence purposes it is only the number of total

OTUs that is important as they are being used to inform about a particular sample not be

used for comparing two different samples. If it is known that the sample is only going to

be analysed to provide intelligence and not be used for differentiating individuals, then a

higher sequence coverage would be advised. Deciding the sequence coverage to use would

also depend on the demand on the machine, if only a few samples needed to be sequenced

then a higher coverage would always provide more information.

Target no. OTUs no. significant
OTUs

50,000

rpoB1 33 14

rpoB2 5 1

16S rRNA 80 23

100,000

rpoB1 41 17

rpoB2 8 2

16S rRNA 113 33

500,000

rpoB1 66 27

rpoB2 20 3

16S rRNA 256 87

Table 6.7: Comparison of OTUs between all targets for experiment 1 at different
sequence coverage - significant OTUs are those with a p-value <0.1 from a t-test between
the samples from each individual or a BF <1.

To check the robustness of the proposed p-value and stability of intra-individual variation

for the two experiments combined, both experiments sub-sampled at 100,000 sequences

were combined and analysed. Due to the low number of OTUs for rpoB2 (see Table 6.7)

this target was not included in the analysis and only the combination of 16S rRNA and

rpoB1 is presented as this has already been chosen as the best combination (see section

6.5.2). Figure 6.10A and B shows that rpoB1 and 16S rRNA sub-sampled at 100,000

sequences and filtered at a p-value of 0.01 can separate the samples from two different

individuals whilst minimising the intra-individual variation, 15.4% and 13.4% respectively.

The combination of the two target genes provides increased separation between individuals
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and lower intra-individual variation (11.9%) (see Figure 6.10C). These results corroborate

those found by both the individual and combined experiments. In fact, the intra-individual

variation of 11.9% is the lowest achieved by any combination observed thus far, indicating

that a coverage of 100,000 sequences is optimal for separating samples from different

individuals.
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A

B

C

Figure 6.10: Hierarchical clustering of both experiments combined and sub-
sampled at 100,000 sequences for rpoB1, 16S rRNA and the two target genes
combined - the relative distance corresponds to the distance between two individuals (A and
B) calculated using the Euclidean distance and the Ward method of hierarchical clustering,
on the normalised and logged species abundance. Only species with a p-value <0.01 from a
t-test between the samples from each individual or a BF <1 were used.
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Discussion

This chapter discusses each of the results chapters in order, starting with chapter 4 and

ending with chapter 6. Subsequently, the factors which can influence the salivary mi-

crobiome are discussed along with ethical considerations and the scientific and forensic

relevance of this thesis. Finally, future work is proposed in order to extend and develop

the work presented in this thesis.

7.1 Method optimisation

The first aim of my thesis was to develop a method for analysing the salivary microbiome

in order to see whether it was possible to differentiate two people based on the bacteria

present in their saliva. For the most part this was achieved, however due to budget

restraints not all parts could be optimised.

7.1.1 Sampling and extraction methods

Neither the sampling method nor the extraction method could be optimised due to bud-

get restraints. In order to test the effect of different sampling and extraction methods

the analysis would have to have been carried out in full, including sequencing and unfor-

tunately the budget available did not permit this. The number of sequences required to

differentiate two individuals was unknown and therefore the number of samples sequenced

in one run was limited to four in order to have a large number of sequences per sample.

This meant that in total only eight samples could be analysed. If the minimum number

of sequences was known then more samples could have been sequenced at the same time

and more parameters such as sampling/extraction method studied.
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It was also unknown whether it was even possible to differentiate two people based on

the bacteria present in their saliva, therefore it was important to demonstrate this be-

fore attempting to optimise the sampling/extraction methods. In order to try and prove

this, saliva was sampled by spitting into a tube ensuring enough sample was present for

sequencing. The samples were collected under identical conditions for both participants

at all time points, in order to minimise any factors which could effect the amount and

composition of saliva (see section 2.1). The goal was to have a new technique for human

identification, therefore this was always considered when designing the method. However,

the technique had to be proven to work before real casework type samples could be tested.

The standard method in forensic science for sampling dried saliva on human skin is to use

a cotton swab dampened with sterile water followed by a second dry swab (155). This

method should still be applicable for sampling saliva for bacterial DNA analysis as both

the water and cotton swabs are sterile and therefore, they should be free from contami-

nation. Avoiding contamination is extremely important in forensic science as the results

can be used in a court of law and therefore must be robust. As this technique would rely

on reference samples to match the bacterial profile from a trace to a person, the method

of sampling used in this thesis could be used for the reference samples. Reference samples

are taken directly from the person, therefore spitting into a tube would provide adequate

saliva to produce an accurate reference sample.

The samples were extracted using the automated MagNA Pure 96 DNA system to limit

human error and minimise possible contamination. Many extraction methods exist for

extracting bacterial DNA and a recent study concentrating on extracting bacterial DNA

from oral samples has shown that results differ depending on the extraction method used

(156). Four different extraction methods were tested, two of which are commonly used

in oral microbiome studies (chemical/enzymatic lysis + DNeasy blood and tissue kit (Qi-

agen) and crude chemical/enzymatic lysis). They show that protocols which included

lysozyme produced better results as it increased nucleic acid recovery from gram-positive

bacteria by disrupting peptidoglycans in cell walls. However, no technique was without

bias and therefore consistency is required between experiments. Otherwise, problems will

arise when comparing results from experiments which use different extraction methods.

Therefore, if this technique were to be implemented into the forensic analysis pipeline,

all laboratories would be required to use the same extraction protocol. A study by Edel-

mann et al. tested the performance of the MagNA Pure system in a clinical setting and

demonstrated that it produced reliable and reproducible results (157) and would hence be

suitable for forensic analysis. However, for a technique to be used with real case samples

it needs to be validated. Therefore, it would be interesting to test whether any already
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validated DNA extraction techniques could be applied to bacterial DNA. Furthermore,

to exploit a trace fully, it would be beneficial if human DNA and bacterial DNA could

be co-extracted, enabling the production of a human DNA profile and a bacterial profile.

Most methods of bacterial DNA extraction will also extract human DNA. Therefore, it

would be interesting to see whether the amount of human DNA extracted is sufficient to

produce a human DNA profile.

7.1.2 Target selection

Deciding which genes to target was important as different genes provide different levels

of identification. 16S rRNA can be described as the standard gene used for molecular

taxonomic assignment for bacteria. Therefore, many primers already exist covering one

or more of the variable regions, along with databases specifically containing 16S rRNA

sequences making it an essential target gene. However, as described in section 3.2.1 there

are disadvantages to targeting 16S rRNA alone. Rajendhran and Gunasekaran (158) dis-

cuss these disadvantages, of which the principle ones are; intra-genomic heterogeneity,

mosaicism and the lack of a universal threshold sequence identity value. They demon-

strate the advantage of targeting more than one gene. Another problem with 16S rRNA

is the presence of partial sequences in databases, which lead to ambiguous classification of

sequences (159). This needs to be taken into consideration when assigning taxonomy to

sequences. Whilst these problems exist, the aim of this thesis is not to comprehensively

characterise the salivary microbiome but to use the bacteria found as a means of distin-

guishing two people. Therefore, as long as the same database is used for all samples, even

if there is an annotation error that error would be applied to all samples and hence not

cause a problem. The same is true for the other disadvantages, for example, if a species

is known to show gene heterogeneity then it is likely to do so in all samples and as the

abundances are compared on a species by species basis this should not pose too much of a

problem. The only potential problem could be from genes which show divergent sequences

for the same species and therefore the copy number for that species could vary between

samples (160). This reiterates the need for a single copy target.

rpoB was chosen as the single copy target because it has already been proven to successfully

identify many different bacterial species (91, 92). A description of rpoB can be found in

section 3.2.1. One problem with rpoB is that, in comparison with 16S rRNA, it is less

conserved and therefore, more than one pair of primers is required to cover the same

bacterial population. However, this can also be seen as an advantage as the rpoB primers

can be designed to amplify bacteria known to be found in a specific sample type. In this
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case, one of the rpoB primer sets was designed to target Streptococcus, one of the main

genera found in saliva. rpoB also has higher resolution enabling identification down to

the strain level (89), something impossible with 16S rRNA. A recent study by Kraal et al.

showed that using 16S rRNA alone can obscure strain-level detail (161). Previous studies

have also shown that humans have many different strains of the same Streptococcus species

with many strains being unique to individuals (60, 61). This confirms the importance of

targeting rpoB. A second problem is that no specialised databases exist for rpoB, so large

databases such as the NCBI nucleotide database must be used. A disadvantage of this is

that the sequences might be less curated however, as discussed above if partial sequences

are used then other problems arise. In this case, two different target genes were used and

to keep the analysis as homogeneous as possible the same database was used for both and

therefore a specialised database would not have been suitable. A recent study by Vos et al.

compares the use of 16S rRNA and rpoB as markers in studies of bacterial diversity (152).

They show that both markers give similar total diversity estimates, however rpoB reveals

more species and requires less sequences to obtain 90% of the true diversity. This implies

that rpoB is a more efficient marker when targeting specific species, however if a general

overview is required with only one primer pair then 16S rRNA is better. Furthermore,

by combining the two targets a more complete view of a microbial population can be

achieved.

7.1.3 Primer design and optimisation

The pre-amplification of DNA with specific primers is important for two reasons:

1. to amplify specific regions capable of identifying which bacteria are present

2. to have enough DNA for sequencing

In order to amplify the DNA, primers specific to the chosen targets were designed and

optimised, without which identification of bacteria present in the samples would be very

difficult. Point two is especially important in forensic science as the average concentration

of DNA found in forensic traces is quite low and hence amplification is required to be

able to further analyse the samples. Chandler et al. (162) demonstrated that the quality

and quantity of DNA influences the microbial community structure, for this reason it

is important to optimise the primers to ensure as much of the sample is amplified as

efficiently as possible. Further work is required to analyse forensic traces to see whether

enough DNA is available to give an adequate representation of the microbial communities

present.
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Concerning 16S and 23S rRNA designing primers to amplify all bacterial species present in

a saliva sample is impossible due to natural genetic variation present in the conserved re-

gions. To design the best primers possible species representing the four principle expected

phyla were used for initial primer design, followed by a check against species known to

be found in saliva. This enabled primers to be designed which covered a large variety of

bacteria whilst ensuring saliva specific bacteria were amplified. However, for 23S rRNA

this was not the case as only four out of ten of the saliva specific species could be aligned.

This shows that even though the initial alignment provided suitable regions for primer

design that this does not always translate to a good alignment with more specific species.

As shown by the virtual simulation of primers 16S rRNA amplified very similar species to

23S rRNA and therefore 23S rRNA was redundant. Had this not been the case the 23S

rRNA primers would have been redesigned.

The rpoB primers were designed using two different species sets, however the results show

that they amplified more than the designed species. This is to be expected as not all

species could be covered during primer design, Vos et al. found the same when using rpoB

(152).

All primer pairs were blasted against the human genome to check whether human DNA

would be amplified. This is important as saliva samples contain a lot of human DNA

and if this was to be amplified the amplification of bacterial DNA would be impeded due

to the preferential amplification of human DNA. Results show that only 1% of sequences

could be associated to the genera Homo and Pan. Pan is included as these sequences do

not naturally occur in saliva but must be homologous to Homo sequences which is why

occasionally they are assigned to Pan. Secondly, all primer pairs were blasted against

the NCBI nucleotide database to test for specificity to target region. This is important

to ensure the efficiency of the reaction, if the primers were not specific then other genes

sequences may get amplified creating noise for the desired target sequences. They would

also use up reagents in the reaction meaning less target sequences could be amplified.

Thirdly, all primer pairs were compared against the HOMD to ensure that they would

amplify taxa which have already been associated to the oral microbiome. The chosen 16S

rRNA primer pair amplified about 50% of the genera in the HOMD demonstrating that

one primer pair is not sufficient to cover all potential genera.

The virtual simulation of all primers using the nt database as the sample showed that

both 16S rRNA primers and the 23S rRNA primers reveal very similar phylum level clas-

sification, indicating that only one of these primer pairs is required. This demonstrates
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the benefit of testing the primers in silico, otherwise it would not be known before carry-

ing out the full experiment that these three primers all amplify very similar species and

therefore it is not necessary to use all three. From these results 16S 1 would be the chosen

primer pair as Bacteroidetes are more present and previous results showed that 23S rRNA

primers only amplified 6% of possible bacteria (see section 4.2). The results for the rpoB

primers show the advantage of targeting more than one area of the gene and as rpoB has a

higher resolution the bacteria can be identified down to the species/strain level. When the

primer pairs were compared against the HOMD to see how many of the genera amplified

have already been found in the oral microbiome about 50% were amplified by the designed

16S rRNA/23S rRNA primers. This figure is a lot lower for rpoB, as rpoB does not target

as many genera. However, of the genera potentially amplified by the rpoB primers, about

35% of them are found in HOMD. As these primers can classify to the species/strain level,

they should still amplify a good number of bacteria.

Primer optimisation is important to ensure the reaction is as specific and efficient as

possible. A temperature gradient was used to find the best annealing temperature for

each primer pair. For all primer pairs the target band is around 100bp, the other distinct

bands on the gels correspond to non-specific amplification and the bands at the top of the

gels to high molecular weight DNA. The darker the band the greater the quantity of DNA

amplified at that size. An ideal amplification would show one dark band for the target

region and no other bands, however this is not always possible. Now, there is a technique

which enables DNA to be purified from a band in a gel, avoiding the problem of non-

specific amplification. However, non-specific amplification still uses reagents which would

otherwise be used to amplify the target region therefore, when choosing the best annealing

temperature both band colour and number of bands are taken into consideration. Finally

to check the chosen primers with the chosen annealing temperature, saliva samples were

amplified. All samples show a distinct band at around 100bp indicating that the target

region was amplified however, some non-specific amplification is present. Therefore, to

have a pure sample containing only the target region the samples are required to be

excised from the gel and purified.

To improve the streamlined analysis of samples multiplexing of primers would be desired.

However, this would require the primers to be optimised together as only one annealing

temperature could be used. This will not be an easy task as each primer pair has different

annealing temperatures ranging from 64.3 ◦C to 56 ◦C. As this range is quite large, trying

to find one annealing temperature will likely involve sacrificing some specificity. If too

much specificity is lost then it would be better to amplify each primer set separately and
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pool afterwards. The only problem with this for forensic samples is the amount of DNA

required. With multiplexed primers only a certain amount of DNA is required, however

if each primer pair is amplified separately three times as much DNA will be required.

Forensic samples are known to not always contain much DNA and therefore the sample

may not contain enough to amplify three different targets. This will be discussed further

in section 7.6.

The one major drawback of PCR amplification is the introduction of errors. If an error is

introduced in the first few cycles then it will be amplified along with all the other sequences

and subsequently be sequenced. If an error occurs in the later cycles it will have less of

an impact as not as many sequences containing the error will be produced. One specific

type of error is the production of chimeric sequences, this happens when incomplete PCR

products act as primers amplifying related fragments (163). Chimeras have been found to

make up between 5 to 45% of a sample (164) and could therefore pose quite a big problem.

During data analysis the data was split up into each individual target by matching the

primer sequence. To reduce chimeras, sequences were only kept that matched the primer

100%. However, this does not avoid the problem of part of the sequence containing the

wrong base. To combat this a high fidelity polymerase is used, in this case the Phusion R©

Hot Start II, as it is known to reduce amplification error. Furthermore, as discussed above,

amplification is very important and cannot be avoided therefore, measures can only be

taken to minimise errors. A recent study has proposed shotgun metagenomic sequencing as

an alternative to target amplification followed by sequencing as this technique fragments

the extracted DNA and directly uses this to create the libraries, hence removing the

pre-amplification step (165). Their results show very similar bacterial composition to

previous studies, however for this application DNA quantity is an issue and therefore

pre-amplification is required to produce enough DNA for sequencing. Nevertheless, these

techniques are developing rapidly and library preparation can now be performed with as

little as 0.01ng of DNA (166), making this a possible option for a forensic application.

7.1.4 Sequencing method

The decision was taken to use Illumina sequencing over 454 due to the shorter read length

enabling a greater depth of sequencing and the capability of paired-end sequencing pro-

ducing high confidence consensus sequences. Furthermore, there are errors associated with

454 sequencing such as problems with reading homopolymers and chimeras which are less

apparent with Illumina.
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An article published by Chengwei et al. in 2012 compared the bacterial composition of

the same sample using both 454 and Illumina sequencing and found that overall the re-

sults were comparable. About 90% of the 454 unique contig sequences overlapped with

the Illumina contig sequences and concerning gene/genome abundance both techniques

provided similar estimates. However, Illumina produced longer and more accurate con-

tigs. They found more sequencing errors with 454 especially coming from A- and T-rich

homopolymers, however Illumina did produce some homopolymer and non-homopolymer

associated sequencing errors (167). This article shows that whilst 454 and Illumina can

produce similar results, there are less sequencing errors with Illumina and combined with

the much greater number of sequences produced it is the more favourable technique for

metagenomic studies. In terms of costs for the large high-throughput machines the Illu-

mina HiSeq 2000 costs $0.07/Mb whereas the 454 GS FLX costs $10/Mb (168), for the

benchtop sequencers the Illumina MiSeq costs $0.5/Mb whereas the 454 GS Junior costs

$31/Mb (169), further justifying the choice of Illumina.

As mentioned above errors occur during the amplification process a problem which also

effects sequencing as the first step uses amplification to attach the library adaptors. For

Illumina chimeras may be less frequent due to a shorter amplicon length when compared

to 454 sequencing.

Regardless of the method chosen as only clusters containing 20 or more sequences were

kept for further analysis it is highly unlikely that any sequencing errors would be found

in the filtered dataset. The sequences were initially quality tested and any that did not

pass were removed. Therefore, most errors should have been removed before clustering

into OTUs and those that were not would be removed in the subsequent step (removing

clusters containing less than 20 sequences). An advantage to choosing a method which

produces less errors is that more sequences should pass the quality control and hence

be available for analysis. As exactly the same methodology was applied to all samples,

regardless of what errors can occur, the conclusions drawn are still valid as all samples

should be affected in the same manner.

7.2 Characterisation of the salivary microbiome

The second aim of my thesis was to characterise the microbiome of two individuals to see

which bacteria were present and in what abundance.
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7.2.1 OTU clustering and BLAST

As described in chapter three, the sequences were processed in order to identify which

bacterial species were present in the sample (see section 3.4). When I started this project

the goal was to have a technique which could be used in a standard forensic laboratory,

therefore when I was deciding which programs to use to process the data, this was taken

into consideration. Scientists who work in forensic laboratories do not necessarily have

bioinformatics training therefore the programs used needed to be easy to implement. An-

other important factor with forensic analysis is time. The faster a result can be produced

the better as suspects can only be held for a certain amount of time after which, if no

evidence is produced, they are released. The programs chosen for quality filtering, read

pairing and barcode splitting were simple as they perform basic tasks and therefore do

not take much time. The choice of clustering algorithm was more complicated as there

are many options available (see section 3.4.4). CD-HIT was chosen for it’s speed and

ease of use. A recent study by Chen et al. compared methods for clustering 16S rRNA

sequences into OTUs. They showed that CD-HIT inferred the true (or closest to true)

number of OTUs and outperformed hierarchical clustering algorithms (135). This article

demonstrates that as well as being fast CD-HIT is also accurate and a good choice for

clustering sequences into OTUs. However, there are a couple of disadvantages to this

method, the first comes from the short word filtering (170). If the mismatches are evenly

spread across the sequences then the number of k-mers (words) can be artificially low.

However, real biological sequences tend to have motifs so evenly distributed mismatches

are rare. The second problem comes from the greedy incremental algorithm which com-

pares the sequences by length with the longest sequence first. Therefore, if two sequences

pass the threshold with the longest sequence then they will be grouped with that one

regardless of whether they actually match a shorter sequence better (170). This could ex-

plain why more than one cluster is assigned to the same taxon. To overcome this problem

all clusters assigned to the same taxon were combined to give a more accurate estimate

of OTU abundance. However, this raises another concern; errors in the database used for

taxon assignment. A second method for clustering sequences, known as de novo cluster-

ing, could help overcome the above-mentioned problems with OTU clustering. De novo

clustering clusters reads against each other without using a reference database. However,

this technique is very time consuming and not suitable for large datasets. Therefore, due

to this constraint, this technique would not be suitable for a forensic application as speed

of analysis is very important.
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Sequences in the NCBI nucleotide (nt) database are manually inputted hence errors can

occur impacting upon taxon assignment. However, the use of databases cannot be avoided

when assigning taxa to a large number of sequences. To combat this problem the same

version of the nt database was used for all samples. Therefore, an incorrect taxon assign-

ment would be used for all samples and therefore the abundance comparison between the

two individuals would still be valid. Errors will impact upon the bacterial characterisa-

tion of the samples leading to under or over representation of certain taxa. The number of

errors in the nt database is kept as low as possible by containing some curated sequences

(refseq (171)) and relying on the user to supply accurate sequences and report any errors

(140). However, due to the number of sequences it is impossible for the NCBI to curate

them all. As two target genes were used, to standardise the analysis a database which

contains sequences for both targets was required, hence the use of the nt database. If a

manually compiled database specific to 16S rRNA and rpoB was used then it would have

to be manually updated, a task which would take a lot of time, whereas the nt database is

constantly updated. As shown in section 6.5.1 using a more up to date database does not

affect the separation of individuals and hence samples analysed with different databases

can still be compared. This is important as in real casework it is not uncommon for

suspects to be involved in more than one crime and therefore due to a time gap between

analyses different databases could be used for taxon assignment. In terms of characteris-

ing which bacteria are present it is important to use the most up to date database as it

will contain the most current knowledge. As more studies are performed these targets get

better characterised and the sequences in the databases should be more accurate and pre-

viously uncharacterised sequences get characterised. Other than possible errors the only

other problem with using the nt database is the time required to perform the BLAST.

The nt database is very large and therefore depending on how many sequences are to be

compared the analysis can take about 1 week, which was the case for 16S rRNA. One way

to combat this problem is to split the data into smaller chunks and analyse each chunk

separately. It is here that having a lot of computing power is useful as the BLASTs can

be run in parallel speeding up analysis.

7.2.2 OTUs

The analysis of the samples in terms of species-level OTUs enables an overview of how

many OTUs are in common with samples from one individual and both individuals com-

bined. As described in section 5.2 99% of the sequences are filtered out, which seems very

high. However, stringent filtering has been used to try and ensure no errors of any kind
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have been included, this includes removing all sequences which appear 19 times or less, of

which singletons make up a large proportion. Even with such stringent filtering a decent

number of OTUs are kept showing that a lot of information can be obtained with a low

percentage of sequences.

For 16S rRNA and rpoB1 a very high percentage of OTUs are found in all samples indicat-

ing that most differences between individuals comes from variation in bacterial abundance.

However, for rpoB2 this percentage is lower implying that for this target different indi-

viduals can have different bacteria. Yet, rpoB2 contributes a much smaller percentage of

OTUs than rpoB1 or 16S rRNA and therefore, the one or two different bacteria do not

impact much upon the separation of individuals. These results show the importance of

including rpoB, a single copy gene, in order to more accurately assess abundance esti-

mates. When combining the experiments a large number of OTUs are removed, however

when the percentage of sequences allocated to OTUs in common between both experi-

ments is calculated the values are very high. This implies that the OTUs not in common

belong to the rare microbiome (bacteria represented by few sequences) and are therefore

not always detected (31). This shows that after filtering the sequences, nearly all those

left are common to both experiments and can therefore be used to separate out the two

individuals.

7.2.3 Bacteria

As presented in section 5.3 the bacterial composition of all eight saliva samples concurs

with previous studies, indicating that the primers designed for this study are robust. Dif-

ferences in abundances of the principle taxa were observed however, due to the differences

in primers and sequencing technology used in other studies this is expected. This study

showed a core genus-level microbiome of 58 genera covering about 95% of the reads. Of

the 58 genera, 24 are unique to both 16S rRNA and rpoB1 respectively and 2 to rpoB2

with 2 being in common with all three targets, 1 in common with rpoB1 and rpoB2 and 6

in common with 16S rRNA and rpoB1. This shows that the addition of rpoB1 generates

24 core genera which would not have been detected with 16S rRNA alone, reiterating the

benefit of using more than one target gene. The inefficiency of rpoB2 is also demonstrated

here with only five core genera detected of which three are found by the other two tar-

gets, confirming the choice to remove this target from analysis. Previous studies have

suggested the existence of a saliva core microbiome however, they all differ slightly indi-

cating that larger-scale studies are required to properly define the core microbiome, if one

exists (31, 71, 172, 173). Huse et al. defined a genus-level core microbiome of 22 OTUs,
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with OTUs occurring in 95% of samples. Of the 22 OTUs 14 are found in the core genera

of this study from 16S rRNA and rpoB1 combined, including Streptococcus, Prevotella,

Rothia and Veillonella with 10 coming from 16S rRNA alone. They also show that of all

the body sites tested saliva shows the largest core microbiome (173). A study specific to

defining the healthy core microbiome of oral microbial communities finds similar results

with the predominant taxa belonging to Firmicutes (Streptococcus, Veillonellaceae and

Granulicatella), Actinobacteria (Rothia), Bacteroidetes (Porphyromonas) and Fusobacte-

ria (Fusobacterium). They found that 99.8% of the reads belonged to shared higher taxa

(genus-level and up) (31). This concurs with the results of this thesis which showed that

the core genera covered about 95% of reads. Along with the suggested core microbiome

Li et al. (172) propose a ‘minor’ microbiome which consists of taxa with low but stable

abundances that appear in the majority of samples. This idea fits well with the results

presented in table 5.8 which show that of the 58 core genera only a few make up about

99% of the reads for each target. Therefore, the majority of core genera are in low abun-

dance. Overall, the microbial composition of the saliva samples analysed in this thesis

corresponds with the literature. Defining the core microbiome is less important for the

goal of this thesis as, if true, the core microbiome in saliva is quite large and therefore

most of the differences between individuals come from varying abundances of bacteria.

However, defining the core microbiome of healthy individuals will help to better under-

stand the function of the bacteria (30). As, if a bacteria is found in everybody then it

could be assumed that it is essential for the healthy functioning of the mouth.

As described in section 2.1.1.1 Streptococcus colonises all surfaces of the oral cavity, espe-

cially the tongue. As a large proportion of bacteria found in saliva come from the tongue

it is logical that Streptococcus is found in high concentrations in saliva.

7.3 Comparison of two salivary microbiomes

The third aim of this thesis was to see whether the differentiation of two individuals

through the analysis of the salivary microbiome is possible.

7.3.1 Hierarchical clustering

To perform the hierarchical clustering the data was first normalised to enable the com-

parison of both experiments, otherwise it would have been impossible to tell whether

differences in the data were real or sequencing artefacts. For the analysis of the individual
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experiments normalisation was not required. Subsequently the data was filtered to only

use the taxa found to be significant by a 2-tailed unpaired t-test (and BF < 1 meaning a

support, generally with values that very strongly support the hypothesis H 1). A t-test

was chosen as only two individuals were being compared and through the log transfor-

mation of data a parametric test was suitable, if more individuals were to be compared

an ANOVA would have to be used. Different significances were used for the individual

and combined experiments (see section 6.2.1). A p-value of <0.1 is quite high compared

to the standard use of p-values, however for this study it was only used as an indication

of which taxa were more significant than others, not a definitive measure of significance.

This seemed the most efficient way to filter the data. To reduce analysis complexity,

only OTUs found in both sequencing runs were kept as they could be more accurately

attributed to an individual and techniques used in forensic science are required to be as

robust as possible. As described in section 6.2 for the combined experiments the unfiltered

data groups by experiment not by individual. This indicates that samples sequenced in the

same run exhibit run specific artefacts or DNA extraction/PCR-specific artefacts, which

if not removed, skew the data.

Cluster analysis was developed for biological classification in 1963 (174) and has been suc-

cessfully used since then, therefore it is well suited to this study. Specifically, hierarchical

clustering was the chosen method for comparing samples as it has been shown to work well

with two datasets (175). Hands and Everitt showed that the Ward method was the best

overall method when compared with single linkage, complete linkage, average and centroid.

Hierarchical clustering can easily be represented as a dendrogram enabling simple visual-

isation of results. As a dendrogram is a graphical representation of a cophenetic matrix,

dendrograms can be compared using the cophenetic correlation coefficient or cophenetic

distance (176). This coefficient can be used to test how faithfully a dendrogram preserves

the pairwise distances between the original unmodelled data points (177). The closer the

value is to one the more accurately the dendrogram represents the data (178). For all

the individual experiments, for each target, the cophenetic distance was greater than 0.99

indicating that the dendrograms accurately represent the data. For the combined experi-

ments both 16S rRNA alone and 16S rRNA combined with rpoB1 produced a cophenetic

distance greater than 0.99, however rpoB1 and rpoB2 alone produced distances of 0.97

and 0.80 respectively. This supports the decision made to remove rpoB2 from the analysis

as the results are not as reliable, whereas both rpoB1 and 16S rRNA produce dendrograms

which accurately represent the data.
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7.3.2 Individual differentiation

The results from the individual and combined experiments demonstrate that it is possi-

ble to group samples from one individual and separate them from samples from a second

individual (see sections 6.4 and 6.5). For both the individual and combined experiments

less than one third of the OTUs are classed as significant, indicating that a large portion

of the bacterial communities are similar in both individuals. This is supported by a study

by Nasidze et al. which showed that 86% of variation was shared between all dataset-

s/individuals, however it also showed that the variation between different individuals was

greater than variation within the same individual (179). This also shows why it is nec-

essary to filter out the most significantly different bacteria and use them to differentiate

the individuals. As explained in section 6.5, for the combined experiments the significant

bacteria are not all the same as those found in the individual experiments. However, when

those significant at p <0.1 for the individual experiments are compared to those signifi-

cant at p <0.01 for the combined experiments the percent of significant OTUs in common

increases to between 75% and 100%. This could be because in the individual experiments

there are only two samples per individual so to be significant at p <0.01 involves the

abundances being very different so it is more likely that the abundances will differ slightly

and therefore only be significant at p <0.1. Whereas, for the combined experiments there

are four samples per individual and therefore differences in abundances are more likely,

classifying certain OTUs significant at p <0.01 when in the individual experiments they

were only significant at p <0.1.

For both the individual and combined experiments intra-individual variation is observed.

Inevitably there is some natural variation in saliva microbiota due to it being a dynamic

fluid and certain bacteria will not always be detected, being either absent or in too few

numbers. This explains the existence of both intra- and inter-individual variation and

specifically why they vary, as not all bacteria are detected in every sample from one

individual. Therefore, even when comparing samples from the same individual variation

is present. Furthermore, even though this study only investigated two individuals, it shows

that intra-individual variation is a lot smaller than inter-individual variation. However,

more samples will need to be analysed in order to confirm this pattern. Lazarevic et al.

also investigated the inter- and intra-individual variations in the salivary microbiome over

the period of one month. They found that samples from the same individual clustered

together indicating that the salivary microbiome is quite stable (71). They also found that

within the same individual samples taken closer together did not group more closely than

those taken further apart, agreeing with the results presented in section 6.5.
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The combination of 16S rRNA and rpoB1 provides the smallest percentage of intra-

individual variation and the second highest inter-individual variation (see section 6.5.2).

Even though the best separation in terms of largest inter-individual variation is achieved

by combining all three targets the addition of rpoB2 does not provide much more sep-

aration than 16S rRNA and rpoB1. As discussed above, rpoB1 identifies a number of

bacteria undetectable by 16S rRNA and it is therefore essential to include it. In terms of

both identification of bacteria and separation of individuals the combination of 16S rRNA

and rpoB1 is the most effective.

7.3.2.1 Evaluative framework

Developing an evaluative framework is beyond the scope of this thesis, however the subject

deserves a mention as without a means for evaluating the results they could not reliably

be presented in a court of law. I proposed two potential methods for evaluating micro-

biome data (180). The first is a simple counting method which can be used to tally how

many of each sequence appears per sample, however this can prove difficult. As described

above, the copy number of 16S rRNA can vary greatly between bacterial species and

PCR-induced bias can both skew estimations of biodiversity (181). This method would

also require a comparison database and statistics on the proportions of bacteria in dif-

ferent populations. Due to the cost of analysis and the number of samples required to

produce such a database and statistics this method is not feasible for the near-future.

The second method uses population data to help associate a sample to a cluster. The

population data is required to give accurate estimations for intra- and inter-individual

variation. The next question posed is: how to compare the intra- and inter-individual

variation? From the results presented in this thesis I suggest that a ratio between the

relative distances calculated through hierarchical clustering could be used. As presented

in chapter 6 the intra-individual variation is never more than 20% of the inter-individual

variation, therefore a threshold could be set defining a maximum level of intra-individual

variation, below which all samples are classed as belonging to one individual. However, as

discussed above, hierarchical clustering was chosen as it is well adapted to small sample

size. Therefore, if many more samples were analysed a different method, better suited to

a large sample size, would be required. Examples of such techniques would be principal

coordinates analysis (PCoA) and principal component analysis (PCA). These techniques

have been applied by many undertaking bacterial community analysis with a larger sample

size (26, 37, 67, 71, 182). These techniques explore and visualise similarities and dissimi-

larities in a dataset using a distance matrix as its base. Each sample is represented as a
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point in a low-dimensional space. The more similar samples are the closer they will be.

Ideally all samples from one individual would group together and distinct groups could be

visualised.

7.3.3 Minimum number of sequences

The results show that the minimum number of sequences for this type of analysis is 100,000

as this provides good separation between individuals whilst minimising the intra-individual

variation. The minimum number of sequences required to differentiate two individuals was

calculated in order to propose the maximum number of samples which can be sequenced in

one run. As explained in section 6.6, the cost of analysis per sample needs to be considered

before this technique could be integrated into routine analysis. By maximising the number

of samples analysed in one run the cost per sample dramatically decreases. By using the

Miseq the time required for one run is significantly lower and hence more suitable for a

forensic laboratory where speed is essential. It is important to remember that if two target

genes are used each one requires 100,000 sequences and therefore halves the number of

samples per run. As reference samples are essential for the differentiation of individuals,

if possible to minimise the effect of sequencing artefacts, I suggest analysing trace and

reference samples together. If the sole purpose for analysis is to provide intelligence then

the more sequences per sample the better as this will provide a more complete overview

of the bacteria present.

7.3.4 What next?

Having shown that two individuals can be differentiated using the proposed method the

next step is to see how the separation differs when 1: more samples from the same in-

dividual are added and 2: samples from different individuals are added. For point one,

two outcomes are possible; either the additional samples fit with the existing ones or

they provide even more variation. A study by Lazarevic et al. compared the number of

species-level phylotypes shared as a function of the number of samples compared (183).

They showed that the higher the number of samples from one individual the smaller the

number of shared phylotypes, however they only compared three samples per individual.

This study has already shown that four samples from one individual can be grouped to-

gether, indicating that even though they might share fewer phylotypes they are still more

similar than samples from another individual. Regarding point two, the addition of more

individuals will indicate how similar different individuals are. For example, if one more
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individual is added will the individuals be separated by similar relative distances to those

calculated for two individuals or will greater depth of analysis be required. In the same

paper Lazarevic et al. also show that the more samples which are combined the smaller

the number of shared species-level phylotypes. This indicates that the core microbiome

decreases with increasing sample number. However, this will not necessarily negatively

impact upon the differentiation of individuals. As described above the separation of indi-

viduals is mainly based on differences in abundances of bacteria and not presence/absence

of bacteria. In actual fact, the fewer similarities there are between individuals the easier

the differentiation will be.

Following on from point two, the next question to ask is how many individuals can be

differentiated at the same time i.e. what is the limit of this technique? Realistically,

how many samples would need to be differentiated at the same time? In a real case

scenario, if a person was sexually assaulted by one person then the expected number of

individuals contributing to a trace would be two (victim and suspect) or maybe three

if the victim has a partner who might have left residual traces. It is unlikely but not

impossible that many individuals could contribute to a trace, in which case, it would

be beneficial if this technique could differentiate them all. With current DNA profiling

methods complex mixtures pose a problem as it is difficult to deconvolute them even with

reference profiles, therefore a method which could successfully analyse multi-contributor

mixtures would be welcomed (184). However, without reference profiles this technique

would not be able to deconvolute mixtures. Moreover, this technique will rely on reference

samples to identify any number of individuals from one onwards. Without a reference

profile it will be impossible to associate the bacteria to a particular person.

It would also be interesting to perform serial dilutions to see whether DNA concentration

influences clustering. This would provide a lower limit in terms of DNA concentration for

the use of this technique.

7.4 Influencing factors

Saliva is a dynamic fluid, which means that through different mechanisms such as talking

and eating bacteria can enter and exit contributing to the bacterial flora. It is mainly for

this reason that intra- and inter-individual variation is observed. There are many different

factors which can influence the salivary microbiome:
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7.4.1 Genetics

One of the first questions asked is: what influence does genetics have? To date most studies

have concentrated on characterising the salivary microbiome in healthy and diseased states.

However, a few studies have analysed the oral/salivary microbiome of twins, common

subjects for studying the effects of genetics. Corby et al. published two papers; the first

demonstrates that genetic factors contribute to the salivary levels of mutans streptococci,

a major caries pathogen, in preschool twins (185). The second investigates the heritability

of oral microbial species in caries-active and caries-free twins (186). They found that the

relative abundance of bacteria associated with caries-free twins was in part determined by

genetics and that there was a distinct difference between the caries-free and caries-active

microbiomes. They conclude that genetic and/or familial factors contribute significantly to

the colonisation of oral bacteria in twins. The first study indicates that genetics may play

a part in forming the diseased oral microbiome. However, the second study shows that the

role of genetics is unclear with no concrete conclusion being drawn. The main disadvantage

of both these studies is that they use twins aged about four years old and therefore, it

is difficult to extrapolate these results to adults. A more recent study investigated the

salivary microbiome of identical twins. Stahringer et al. showed that for twins aged

between 12-24 years their salivary microbiomes were not statistically more similar than for

any other pair (74). This indicates that overall there is very little or no genetic influence on

salivary microbiome composition and that the differences observed between twins mainly

come from environmental factors. To confirm this pattern more studies need to be carried

out on a larger age range starting from 24 years. However, the results presented in this

article show promise for the use of the salivary microbiome for differentiating twins. The

one conclusion which can be drawn from these articles is that much more work is required to

elucidate the link between genetics and the composition of the salivary microbiome.

7.4.2 Antibiotics

One major factor which can effect the salivary microbiome is antibiotics. Thus far, very

few studies have broached the subject (187, 188, 189) with only one concentrating on

saliva (190). Lazarevic et al. described the effects of amoxicillin treatment on the salivary

microbiota in children with acute otitis media. They showed that directly after treatment

there was a change in the microbiota in terms of both species richness and diversity.

However, three weeks after the end of treatment the microbiota had mainly recovered back

to pre-antibiotic diversity. This, would only impact cases where the saliva was deposited

on a crime scene whilst the perpetrator was taking antibiotics. In such cases, presence of
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antibiotics in the sample might be determined and an additional sample might then be

obtained upon treatment with the same antimicrobial substance. In the case where the

perpetrator is taking antibiotics when apprehended a reference sample could be taken at

a later date once the salivary microbiome had recovered. This study only investigated

children, therefore similar studies concentrating on adults are required to see if the same

pattern is observed. This is extremely important as the majority of crime is committed

by adults so it will be essential to show that antibiotics only have a short term effect on

the composition of the adult salivary microbiome.

7.4.3 Environmental factors

Many studies mention that environmental factors such as diet, oral hygiene, smoking,

alcohol and drug consumption may influence the salivary microbiome (70, 71, 74, 165,

183, 191) however, only one study thus far has directly approached the subject (192).

Belstrom et al. investigated whether diet, lifestyle and socio-economic status had an effect

on the salivary microbiome of 292 participants. They detected two bacteria (Streptococcus

sobrinus and Eubacterium brachy) in smokers which were not detected in non-smokers

and when former smokers were compared with never smokers there was no statistical

difference. This suggests that the two bacteria are associated with smoking and could

potentially be used for intelligence purposes to indicate whether a person smokes or not.

They also found statistical differences between high and low socio-economic status with 20

bacteria having different abundances. It would be more difficult to use this for intelligence

purposes as it would involve calculating ratios between the statistically different bacteria

and making an inference about socio-economic status. Quite surprisingly they found that

diet did not produce any statistical differences and neither did age, gender, BMI or alcohol

consumption. However, as they discuss in their paper, participants of medical studies tend

to be healthier than the general population and this may limit the amount of variation and

the detection of significant associations. Stahringer et al. briefly mention that their study

included data relating to personal preferences and characteristics and they also found

no effect from weight, gender or diet (74), yet they conclude that environmental factors

provide the greatest influence on the composition of the oral microbiome. A recent study

by Benitez-Paez et al. which investigated microbiota diversity in oral biofilms showed

that bacteria which changed activity during biofilm formation and after meal ingestion

were person-specific and after meal ingestion some individuals showed no changes in the

active bacterial population (193). These results indicate that the oral microbiome is quite
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stable, person specific and the effect of meal ingestion is minimal. Furthermore, some of

the bacteria will be found in saliva and therefore may follow the same pattern.

Subsequently, even if diet does not provide great variation in the salivary microbiome,

certain bacteria could still be associated with a particular diet or foodstuff. For example,

in both individuals analysed for this thesis Malus x domestica was detected, which is oth-

erwise known as the common eating apple. This could imply that both individuals eat

apples. One could hypothesize that a vegetarian would have different bacteria to a carni-

vore or vegan. A recent study has shown that children with celiac disease who therefore

follow a gluten-free diet have a different salivary microbiome to healthy children with a

decreased number of Streptococcaceae (194). However much more research is required to

link specific bacteria to specific foodstuffs or food regimes.

Song et al. published a paper comparing oral, skin and gut microbiota of cohabiting family

members and their pet dogs (195). They found that for the oral microbiome, age had an

influence with a large increase in diversity happening between 0-3 years. However, neither

gender nor dogs seemed to affect the oral or gut microbiome but they did significantly affect

skin microbiota, whereas cohabitation influenced all three but affected the skin microbiota

more. This could be because even though saliva is a dynamic fluid the mouth will provide a

certain level of protection, whereas skin is always exposed to environmental contact. This

paper also estimates that oral bacteria make up about eleven percent of palm microbiota

indicating that close physical contact can affect the taxonomic composition of the skin.

To date this is the first study to investigate the effect of cohabitation and dogs on the

oral microbiome, therefore further studies are required to confirm the results. Another

study by Jung-Gyu Kang et al. investigated bacterial diversity in human saliva from

different ages (196). They found that young adults (32 and 35 years) had more species

coming from Streptococcus and Prevotella, whereas individuals aged 5 and 65 had more

species belonging to Rothia and the latter showed higher bacterial diversity. This study

indicates that age may influence the composition of the salivary microbiome. Furthermore,

Nasidze et al. investigated global diversity in the salivary microbiome and they found

that geographical location did not have an influence. However, they do state that this

conclusion is limited to the pool of 16S rRNA sequences identified (70).

Despite the fact that the oral microbiome has been studied extensively in dentistry there

are very few studies which discuss the effect of oral hygiene on the salivary microbiome,

most articles concentrate on the effect the bacteria have on oral health. The assumption is

often made that oral hygiene does influence the composition of the salivary microbiome. A

Brazilian study investigated bacterial diversity in the saliva of patients with different oral
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hygiene indexes. They found that indviduals with good oral hygiene had greater bacterial

diversity than those with poor oral hygiene and the two communities were significantly

different (197). Another study by Matsui et al. investigated the effect of tongue cleaning

on bacterial flora in tongue coating and dental plaque (198). They found that tongue

cleaning reduced the amount of bacteria in tongue coating and that as the total bacteria

recovered an increase in Fusobacterium nucleatum was observed. Both of these studies

indicate that oral hygiene influences the composition of the oral/salivary microbiome.

However, further studies are required to fully elucidate the effect of oral hygiene on the

composition of the salivary microbiome.

These studies provide a good start to investigating the effect of environmental factors

however, more studies are required to reveal the real impact of these factors on the com-

position of the salivary microbiome. They also indicate that a persons microbiome could

be used as intelligence to inform about their lifestyle.

7.5 Ethical considerations

When any new technique is proposed for use in the field of forensic science the ethical

implications of the technique have to be taken into consideration. As the technique will

be used for law enforcement it cannot break any human rights laws or any laws specific

to the country where it is being used. For example, in Switzerland it is illegal to use any

technique which is deemed to reveal anything other than the sex of a person. Therefore, for

example, phenotyping cannot be used. DNA profiling is acceptable, as the only personal

trait of the person revealed is the sex and the targeted STRs are in non-coding regions.

With human DNA there have been many debates over whether a DNA profile can be kept

and if so, where and how long for and subsequently, who can have access to the profiles.

For a technique to be used on a real case, it has to be scrutinised and validated, (199)

because it could be the one piece of evidence that indicates whether a person is innocent

or guilty.

With advances in technology, analysis of the human microbiome has reached new levels,

enabling scientists to fully characterise which bacteria are present, where and what their

function are. This means that, much more is now being learnt about the connection

between health and the microbiome. With this link to health, individuals will become

responsible for maintaining the health of their microbiome (200). Subsequently, the general

public will become more interested in the microbiome and this will influence whether they

accept the analysis of specific microbiomes for forensic purposes.
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The major difference between standard human identification techniques and one based

on microbiome analysis is the latter uses bacterial DNA not human DNA. Analysis of

human DNA directly connects a sample to a person and a person perceives their DNA as

being part of them. Therefore, in general, people do not like giving samples of their DNA,

especially when they are unsure what analysis will be carried out. As more is discovered

about the human microbiome peoples’ perception of it will develop and potentially change.

It has already been referred to as the second genome (201). Therefore, will people start

to perceive their microbiome as part of them? This idea was developed by Gli et al. in

(200), where they discuss the human microbiome and conceptions of self. They propose

that, if our microbiota are unique and therefore, could be used to identify us then this

should encourage us to identify with our microbiome. Moreover, we could see our unique

microbial mark as a unique expression of self, in the same way we do with fingerprints. As

discussed above, environmental factors strongly influence our microbiota and this could

lead to a realisation that our identity is partly determined by our environment. They

conclude that, in the future, we might view a person as a human and bacterial hybrid, a

superorganism. It is therefore, very important that research on the human microbiome

is accurately communicated to the general public so they can understand it’s importance

and make informed decisions regarding it’s use.

In section 7.3.2.1 I propose a method for evaluating a comparison between microbiomes

for the purpose of human identification which would involve using databases containing

the proportions of bacteria in different populations. At the moment, the only feasible

way of acquiring such information would be to use data from clinical studies and com-

bine that with forensic studies. Furthermore, in the future, the analysis of the salivary

microbiome may become standard dental practice, in which case, it may be possible for

the forensic domain to have access to this data for comparison purposes. However, both

of these possibilities may pose ethical problems due to confidentiality agreements with

participants/patients. A recent book discussing the ethical, legal and social concerns of

human microbiome research states that access to private patient information for research

might be justified if the research is potentially beneficial to society (202). Therefore, the

general public may agree to allowing access to data concerning their microbiomes if it

helps catch criminals and the data is used for comparison purposes only. However, this

will involve properly informing the general public of exactly who will have access to their

data and what it will be used for.
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7.6 Scientific (forensic) relevance

The work presented in this thesis is original and interesting to the scientific community as

it takes a technique which is already in use, adapts it, and applies it to a completely dif-

ferent field. Instead of approaching the analysis of the salivary microbiome from the pure

characterisation aspect, it uses the characterisation to differentiate samples from different

individuals. Results support the fact that the saliva microbiome is stable over time and

distinct in each individual, however a core microbiome does seem to exist, the extent of

which is currently undetermined. Furthermore, the data presented will contribute to defin-

ing which bacteria are present in the healthy salivary microbiome and how they change

over time. Unlike most other studies which use only 16S rRNA this study combined 16S

rRNA with rpoB proving that the combination of the two provides a deeper character-

isation of the bacteria present. Without rpoB many of the streptococci species present

would go undetected due to the lack of genetic resolution of 16S rRNA. As Streptococcus

is the most abundant genus in saliva it is important to characterise it in as much detail

as possible. This approach would be beneficial for studies aiming to characterise bacteria

to a level unattainable with 16S rRNA alone whilst still getting a good overview of which

bacteria are present. As more is learnt about which bacteria are present in health and

disease and their function more can be understood about the influencing factors. By com-

bining the potential uses of forensic science with the more standard goals of microbiology

a better understanding of the salivary microbiome can be achieved.

The work presented in this thesis is also of interest to the forensic community as it provides

a potential new method for human identification. As described in section 1.1 the standard

technique of STR typing used for human identification has its limitations and currently

there is no real alternative, only other less sensitive techniques based on human DNA. The

technique proposed in this thesis will provide a complimentary method for saliva traces.

As saliva is often found in sexual assault cases which more often than not do not result in a

conviction (see section 1), this technique could become indispensable. This thesis provides

the basis for future studies into the application of high-throughput sequencing of bacterial

DNA to saliva samples. It has been shown that the differentiation of two individuals is

possible and that samples from the same individual group together. The application of

this technique to case-like samples was beyond the scope of this thesis, therefore this needs

to be tested before the technique could be used on a real case.

One issue with forensic samples is the quantity of DNA is often quite low and this could

pose a problem for high-throughput sequencing. Currently the desired amount of DNA

for paired-end library preparation is about one microgram, whereas forensic traces can
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contain as little as a few picograms of DNA. PCR amplification is used to increase the

amount of DNA however, a minimum amount of DNA is required to overcome stochastic

effects (203). The average bacterial genome has a genome mass of a few femtograms which

is a lot smaller than the diploid human genome at 6.3 picograms. Therefore, from the same

forensic trace much more bacterial DNA can be amplified than human DNA. As described

in section 2.1.1 500 million bacterial cells can be found in one millilitre of saliva which

equates to 500 thousand bacterial cells in one microlitre of saliva. Most saliva traces found

are larger than one microlitre therefore, in theory, the DNA of more than 500 thousand

bacterial cells could be amplified. However, it must be considered that not all bacterial

DNA will be amplified by the chosen primers and due to amplification bias differences may

be seen between traces and reference samples as the latter will contain much more DNA.

More work is required to reveal any differences and whether they impact upon associating

traces to reference samples. A recent study has presented a method for preparing high-

quality Illumina sequencing libraries from picogram quantities of DNA (204). Currently,

this method does not work with pre-amplified sequences but it shows promise that in the

future a method could be developed, enabling forensic samples very low in DNA to be

analysed.

Another important point to consider with regards to forensic traces is how resistant the

traces (i.e here the bacterial DNA) are to external factors. Indeed, human DNA can

be degraded by UV light, heat and humidity, environmental conditions which are often

found at crime scenes. Specifically nucleases, such as deoxyribonuclease I, found in saliva

degrade exposed human DNA making it difficult to obtain sufficient quantity and quality

of DNA to produce a DNA profile (41). One advantage of microbiota based forensic

investigation is that bacterial DNA is better protected from enzymatic degradation than

human DNA as bacterial DNA is circular often highly condensed as “nucleoid”. Moreover,

prokaryotic cells have a cell wall which is chemically complex with a peptidoglycan matrix

that better protects the contents of the cell compared to the cell membrane of eukaryotic

cells. Therefore bacterial DNA should be more resistant than eukaryotic DNA to external

factors taking longer to be degraded.

A further point to consider is the effect of background bacteria and mechanisms of trans-

fer. When a saliva trace is left on a surface there will invariably be some bacteria already

present on the surface. The question becomes, can the bacteria in the saliva be differenti-

ated from the background. This is still to be investigated, however I would propose that

a second sample of only the background be taken from as close to the trace as possible

in order to determine which bacteria are present on the surface. These bacteria could
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subsequently be subtracted from the trace sample revealing the bacteria in the saliva.

The second issue of mechanisms of transfer is important for determining activity level, i.e.

how the saliva got there and not just who the saliva belongs to. Would it be possible to

find out from the saliva trace whether it was transfered innocently or during a crime. I

think this will be very difficult, already linking the bacteria to a specific person will be an

achievement. However, it is definitely worth investigating further and simulating crimes

to see if any differences can be observed.

The application of this technique to sexual assault cases would involve analysing mixed

skin and saliva samples as the majority of saliva traces are likely to be found on the skin

through either biting, kissing or licking. For this to be successful further work is required

to see whether the saliva microbiome can be separated from the skin microbiome and

subsequently associated to a reference sample. A study by Costello et al. into bacterial

community variation in human body habitats across space and time showed that skin bac-

terial communities varied both within and between individuals and were most divergent

from oral bacteria (26). They also found that different skin sites (e.g. forearm, palm, fore-

head and foot) showed different levels of diversity with the forearm having high diversity.

However, as discussed previously the skin has more contact with the external environment

so greater variation is expected. They also tested how oral bacteria reacts when placed on

the forearm and they discovered that, over a couple of hours, it stays the same and does

not adapt to the forearm microbiome. This work is very promising as it indicates that if

a saliva sample is left on skin that it could be associated to the corresponding reference

profile. A few studies have investigated the use of streptococcal DNA in bite-mark analy-

sis (38, 39, 40, 41). The first two studies show that after a few hours streptococcal DNA

could be recovered and strain level identification used to link the bite-mark to the suspect.

Rahimi et al. (40) used arbitrarily primed PCR to amplify streptococcal DNA, identifying

106 genotypes of which, at least 8 distinct strains were found in each participant. They

used the amplicon profile to match the biter to the sampled bite-mark. Most recently

Kennedy et al. (41) used targeted sequencing of 16S rRNA, 16S-23S intergenic spacer and

rpoB aimed specifically at streptococcus species/strains. They found that for all targeted

regions it was possible to match the biter to the bite-mark, however rpoB was by far the

most effective matching 100% of bite-marks. They conclude that this technique could be

used to corroborate other evidence for the identification of assailants. These results are

very promising as they show that streptococcal DNA can be detected on skin and matched

to a reference sample. Therefore, in theory this should apply to all bacteria and enable

the technique presented in this thesis to be used for human identification and not just

corroborate other evidence.
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7. DISCUSSION

When a new technique is proposed, laboratories must consider the economical impact of

integrating the technique into routine analysis. Currently, high-throughput sequencing is

quite expensive however, since it’s introduction about eight years ago costs have gradually

decreased making the technique more and more affordable. With the arrival of benchtop

sequencers, smaller laboratories are now able to buy one. In the past couple of years

groups have started investigating the use of high-throughput sequencing for analysing

STRs (205, 206) and developing specific programs to analyse the data (207). Concurrently,

Illumina have been developing a sequencing strategy aimed at forensic science (208). With

these advances, it is possible that in the next few years high-throughput sequencing will

replace capillary electrophoresis, as a result most forensic laboratories will own a high-

throughput sequencer. If this is the case, then the technique proposed in this thesis could

easily slot into routine analysis without incurring large costs.

7.7 Future work

As discussed throughout this chapter there are many different factors left to study. Hav-

ing shown that this technique works with the DNA extraction method used it would be

interesting to look into other methods to see whether there is a big difference and whether

samples extracted using different methods could be compared. Furthermore, the possibil-

ity to co-extract human and bacterial DNA is of great interest and should be investigated.

For the applicability to forensic science this technique should be tested on the Illumina

benchtop sequencer, the MiSeq, to check that the results are comparable to those from the

HiSeq. However, one would expect the results to be comparable as the technology is the

same. The next major step is to analyse samples from different people to test the limits of

the technique and thus offer a picture of the abundance (occurrence) of the characteristics

of interest. It is also important to analyse more samples from the two individuals used in

the current research to see which taxa are found and whether they correspond to either of

the first two experiments. To be able to use the data for intelligence purposes the effect of

external factors needs to be investigated, in order to make links between specific bacteria

and certain lifestyle choices. As forensic traces are often found on exposed surfaces the

persistence of bacteria on these surfaces should be studied, in order to investigate the effect

of background bacteria and how the bacteria interact with different surface types. Finally,

from all this new data an evaluative framework can be developed so that the results can

be presented in a court of law.
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Conclusion

This thesis presented the first study into the use of the salivary microbiome for human

identification. It has shown that the salivary microbiome exhibits a significant biodiversity

and by using a PCR-based metagenomic approach the discrimination of two unrelated

individuals was possible. The biodiversity revealed in all samples was similar to that

found by previous studies, showing that the designed primers are robust. However, the

abundances do differ but this has been observed previously (74).

The goal of this technique is not to replace current methods used for human identification

but to be complimentary. When these methods do not produce satisfactory results there

is no other option from a biological identification stand-point. By analysing the salivary

microbiome, new options become available that previously were not possible. There are

two potential applications of this technique in forensic science: human identification and

intelligence. The first, presented in this thesis, will only be possible if a reference sample

is available. The second putative application, presented in the discussion, uses the same

data but looks at the presence of specific bacteria which could indicate a certain lifestyle.

This information might be used to help guide an investigation. If an identification is not

possible then the data acquired could still provide valuable information to a case. However,

much more work is required to relate given species to given lifestyle habits. It is possible

to extract both human and bacterial DNA from the same sample. This will enable both

methods of human identification to be applied to the same sample, avoiding having to

chose which method to use. The advantage of this is that if the human DNA analysis

produces a full profile but no match in a database, the bacterial DNA could potentially

be analysed for intelligence purposes.

In conclusion, Illumina high-throughput sequencing of the salivary microbiome can be used

to identify saliva samples from two different individuals. Altogether, this technique proved
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8. CONCLUSION

to be highly robust and is innovative not only for its putative application in forensic science,

but also by using a combination of a highly discriminative gene (rpoB) with the 16S rRNA

target generally used for PCR-based metagenomics. Furthermore, this technique shows

promise for human identification, specifically for twins and other cases where standard

DNA typing does not provide satisfactory results due to degradation of human DNA.

Further work is required to investigate the benefit and limitations of this technique.
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[62] H. Shaw. Etude des bactéries présentes dans la salive. Un

potentiel pour de nouveaux tests indicatifs? Master’s thesis,

Ecole de Sciences Criminelles, University of Lausanne,

Switzerland, 2011. 9, 10, 11

[63] J. Li, I. Nasidze, D. Quinque, M. Li, H-P. Horz, C. Andre,

R. Garriga, M. Halbwax, A. Fischer, and M. Stoneking.

The saliva microbiome of Pan and Homo. BMC Mi-

crobiology, 13(1):204, 2013. 11

[64] P. E. Kolenbrander, R. J. Palmer, S. Periasamy, and N. S.

Jakubovics. Oral multispecies biofilm development

and the key role of cell–cell distance. Nat Rev Micro,

8(7):471–480, 2010. 11

[65] P. E Kolenbrander. Multispecies communities: in-

terspecies interactions influence growth on saliva

as sole nutritional source. Int J Oral Sci, 3(2):49–54,

04 2011. 11

[66] E. M. Bik, C. D. Long, G. C. Armitage, P. Loomer, J. Emer-

son, E. F. Mongodin, K. E. Nelson, S. R. Gill, C. M. Fraser-

Liggett, and D. A. Relman. Bacterial diversity in

the oral cavity of 10 healthy individuals. ISME J,

4(8):962–974, 08 2010. 11, 12

[67] D. Belstrøm, N. E. Fiehn, C. H. Nielsen, P. Holmstrup,

N. Kirkby, V. Klepac-Ceraj, B. J. Paster, and S. Twetman.

Altered Bacterial Profiles in Saliva from Adults

with Caries Lesions: A Case-Cohort Study. Caries

Research, 48(5):368–375, 2014. 12, 111

[68] X. Ge, R. Rodriguez, M. Trinh, J. Gunsolley, and P. Xu.

Oral Microbiome of Deep and Shallow Dental

Pockets In Chronic Periodontitis. PLoS ONE,

8(6):e65520, 2013. 12

[69] B. Liu, Li. L. Faller, N. Klitgord, V. Mazumdar, M. Ghodsi,

D. D. Sommer, T. R. Gibbons, T. J. Treangen, Y-C. Chang,

S. Li, O. C. Stine, H. Hasturk, S. Kasif, D. Segrè, M. Pop,
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http://cmr.asm.org/content/10/3/505.abstract N2 - Staphylococcus aureus has long been recognized as an important pathogen in human disease. Due to an increasing number of infections caused by methicillin-resistant S. aureus (MRSA) strains, therapy has become problematic. Therefore, prevention of staphylococcal infections has become more important. Carriage of S. aureus appears to play a key role in the epidemiology and pathogenesis of infection. The ecological niches of S. aureus are the anterior nares. In healthy subjects, over time, three patterns of carriage can be distinguished: about 20carriers, 60carry S. aureus. The molecular basis of the carrier state remains to be elucidated. In patients who repeatedly puncture the skin (e.g., hemodialysis or continuous ambulatory peritoneal dialysis [CAPD] patients and intravenous drug addicts) and patients with human immunodeficiency virus (HIV) infection, increased carriage rates are found. Carriage has been identified as an important risk factor for infection in patients undergoing surgery, those on hemodialysis or CAPD, those with HIV infection and AIDS, those with intravascular devices, and those colonized with MRSA. Elimination of carriage has been found to reduce the infection rates in surgical patients and those on hemodialysis and CAPD. Elimination of carriage appears to be an attractive preventive strategy in patients at risk. Further studies are needed to optimize this strategy and to define the groups at risk.
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http://www.sciencemag.org/content/308/5728/1635.abstract N2 - The human endogenous intestinal microflora is an essential “organ” in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
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http://mmbr.asm.org/content/76/1/66.abstract N2 - Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
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http://cmr.asm.org/content/20/4/593.abstract N2 - Summary: Bacteroides species are significant clinical pathogens and are found in most anaerobic infections, with an associated mortality of more than 19bacteria maintain a complex and generally beneficial relationship with the host when retained in the gut, but when they escape this environment they can cause significant pathology, including bacteremia and abscess formation in multiple body sites. Genomic and proteomic analyses have vastly added to our understanding of the manner in which Bacteroides species adapt to, and thrive in, the human gut. A few examples are (i) complex systems to sense and adapt to nutrient availability, (ii) multiple pump systems to expel toxic substances, and (iii) the ability to influence the host immune system so that it controls other (competing) pathogens. B. fragilis, which accounts for only 0.5pathogen due, in part, to its potent virulence factors. Species of the genus Bacteroides have the most antibiotic resistance mechanisms and the highest resistance rates of all anaerobic pathogens. Clinically, Bacteroides species have exhibited increasing resistance to many antibiotics, including cefoxitin, clindamycin, metronidazole, carbapenems, and fluoroquinolones (e.g., gatifloxacin, levofloxacin, and moxifloxacin).
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http://cmr.asm.org/content/11/4/589.abstract N2 - Bacteria belonging to the genus Klebsiella frequently cause human nosocomial infections. In particular, the medically most important Klebsiella species, Klebsiella pneumoniae, accounts for a significant proportion of hospital-acquired urinary tract infections, pneumonia, septicemias, and soft tissue infections. The principal pathogenic reservoirs for transmission of Klebsiella are the gastrointestinal tract and the hands of hospital personnel. Because of their ability to spread rapidly in the hospital environment, these bacteria tend to cause nosocomial outbreaks. Hospital outbreaks of multidrug-resistant Klebsiella spp., especially those in neonatal wards, are often caused by new types of strains, the so-called extended-spectrum-β-lactamase (ESBL) producers. The incidence of ESBL-producing strains among clinical Klebsiella isolates has been steadily increasing over the past years. The resulting limitations on the therapeutic options demand new measures for the management of Klebsiella hospital infections. While the different typing methods are useful epidemiological tools for infection control, recent findings about Klebsiella virulence factors have provided new insights into the pathogenic strategies of these bacteria. Klebsiella pathogenicity factors such as capsules or lipopolysaccharides are presently considered to be promising candidates for vaccination efforts that may serve as immunological infection control measures.
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http://jmm.sgmjournals.org/content/46/11/903.abstract N2 - Over the last 30 years, Serratia marcescens has become an important cause of nosocomial infection. There have been many reports concerning the identification, antibiotic susceptibility, pathogenicity, epidemiological investigations and typing of this organism. Accurate identification is important in defining outbreaks. The API 20E system has been used widely, but is not individually satisfactory. The growth of S. marcescens in the environment has been investigated in relation to water, disinfectants and plastics such as blood bags. Certain extracellular products are unique to S. marcescens. Pigment (prodigiosin) biosynthesis by S. marcescens has been investigated fully since the emergence of the organism as a cause of infection. Many other aspects of the pathogenicity and virulence of S. marcescens have been studied, including adherence and hydrophobicity, lipopolysaccharide (LPS) and extracellular products. Two modes of adhesion to host epithelial surfaces have been suggested. These are mannose-resistant (MR) pili and mannose-sensitive (MS) pili. LPS, which is responsible for the biological activity of endotoxin, has been investigated fully and 24 somatic antigens have been described. The production of different enzymes by S. marcescens as virulence factors has also been reported, including chitinase, lipase, chloroperoxidase and an extracellular protein, HasA. Antibiotics used to treat serratia infection include β-lactam agents, aminoglycosides and fluoroquinolones and a variety of different resistance mechanisms have been demonstrated. Typing methods used to study the epidemiology of S. marcescens include biotyping, bacteriocin typing, phage typing, plasmid analysis, polymerase chain reaction amplification of enterobacterial repetitive intergenic consensus sequences (ERIC-PCR) and ribotyping. Serological typing has also been used and this method seems to be a suitable first-line typing method for S. marcescens, although some strains remain untypable. RAPD-PCR has also been applied to a small number of isolates and seems to be a promising method, especially for rapid monitoring of an outbreak and tracing the source of initial infection.
http://iai.asm.org/content/66/2/645.abstract N2 - Enterobacter cloacae is not a primary human pathogen but has been considered to be an important cause of nosocomial infections. Even so, there are almost no reports on its ability to produce recognized virulence-associated properties. In this study, we show that most of the E. cloacae strains examined were resistant to serum bactericidal activity and were able to produce aerobactin and mannose-sensitive hemagglutinin, and all of them could adhere to and invade HEp-2 cells. Since E. cloacae is part of the normal intestinal floras of many individuals, we believe that infectious disease due to endogenous E. cloacae might be a result of both host predisposing factors and the bacterial virulence determinants that we have detected in this survey.
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http://nar.oxfordjournals.org/content/35/suppl_2/W43.abstract N2 - We developed OligoCalc as a web-accessible, client-based computational engine for reporting DNA and RNA single-stranded and double-stranded properties, including molecular weight, solution concentration, melting temperature, estimated absorbance coefficients, inter-molecular self-complementarity estimation and intra-molecular hairpin loop formation. OligoCalc has a familiar ‘calculator’ look and feel, making it readily understandable and usable. OligoCalc incorporates three common methods for calculating oligonucleotide-melting temperatures, including a nearest-neighbor thermodynamic model for melting temperature. Since it first came online in 1997, there have been more than 900 000 accesses of OligoCalc from nearly 200 000 distinct hosts, excluding search engines. OligoCalc is available at http://basic.northwestern.edu/biotools/OligoCalc.html, with links to the full source code, usage patterns and statistics at that link as well.
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[130] T. Magofç and S. L. Salzberg. FLASH: Fast Length

Adjustment of Short Reads to Improve Genome

Assemblies. Bioinformatics, 2011. 31

[131] http://hannonlab.cshl.edu/fastx toolkit/index.html.

32

[132] V. K. Sharma, N. Kumar, T. Prakash, and T. D. Tay-

lor. Fast and Accurate Taxonomic Assignments

of Metagenomic Sequences Using MetaBin. PLoS

ONE, 7(4):e34030, 04 2012. 33

[133] D. Wei, Q. Jiang, Y. Wei, and S. Wang. A novel hierarchi-

cal clustering algorithm for gene sequences. BMC

Bioinformatics, 13(1):174, 2012. 33, 58

[134] A. Khamis, D. Raoult, and B. La Scola. Comparison

between rpoB and 16S rRNA Gene Sequencing

for Molecular Identification of 168 Clinical Isolates

of Corynebacterium. Journal of Clinical Microbiology,

43(4):1934–1936, 04 2005. 33, 66

[135] W. Chen, C. K. Zhang, Y. Cheng, S. Zhang, and H. Zhao. A

Comparison of Methods for Clustering 16S rRNA

Sequences into OTUs. PLoS ONE, 8(8):e70837, 08

2013. 33, 105

[136] P. D. Schloss and S. L. Westcott. Assessing and Im-

proving Methods Used in Operational Taxonomic

Unit-Based Approaches for 16S rRNA Gene Se-

quence Analysis. Applied and Environmental Microbiol-

ogy, 77(10):3219–3226, 05 2011. 34

[137] X. Hao, R. Jiang, and T. Chen. Clustering 16S rRNA

for OTU prediction: a method of unsupervised

Bayesian clustering. Bioinformatics, 2011. 34

[138] W. Li, L. Jaroszewski, and A. Godzik. Clustering of

highly homologous sequences to reduce the size of

large protein databases. Bioinformatics, 17(3):282–

283, 2001. 34

[139] W. Li and A. Godzik. Cd-hit: a fast program for clus-

tering and comparing large sets of protein or nu-

cleotide sequences. Bioinformatics, 22(13):1658–1659,

2006. 34

[140] The NCBI Handbook, 2nd edition. National Center for

Biotechnology Information, 2013. 36, 106

[141] S. Anders and W. Huber. Differential expression anal-

ysis for sequence count data. Genome Biology,

11(10):R106, 2010. 37, 70

[142] J. C. Marioni, C. E. Mason, Shrikant M. Mane, M. Stephens,

and Y. Gilad. RNA-seq: An assessment of technical

reproducibility and comparison with gene expres-

sion arrays. Genome Research, 18(9):1509–1517, 2008.

37

[143] L. Wang, Z. Feng, X. Wang, X. Wang, and X. Zhang.

DEGseq: an R package for identifying differen-

tially expressed genes from RNA-seq data. Bioin-

formatics, 26(1):136–138, 01 2010. 37

[144] Deseq: http://www.bioconductor.org/packages/

release/bioc/html/DESeq.html [cited 12th July

2013]. 38

[145] J. Townend. Practical statistics for environmental and bio-

logical scientists. Wiley-Blackwell, 2002. 39

[146] F. Taroni, S. Bozza, A. Biedermann, C. Aitken, and P. Gar-

bolino. Data analysis in forensic science: A Bayesian deci-

sion perspective. John Wiley and Sons, Chichester, 2010.

40

[147] Hierarchical clustering:

http://stat.ethz.ch/R-manual/R-

patched/library/stats/html/hclust.html [cited

12th July 2013]. 40

[148] http://stat.ethz.ch/R-manual/R-

patched/library/stats/html/dendrogram.html.

40

[149] J. R. Cole, B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M.

McGarrell, G. M. Garrity, and J. M. Tiedje. The Ribo-

somal Database Project (RDP-II): sequences and

tools for high-throughput rRNA analysis. Nucleic

Acids Research, 33:D294 – D296, 2005. 48

[150] E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Lud-

wig, J. Peplies, and F. O. Glöckner. SILVA: a com-
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http://aem.asm.org/content/77/10/3219.abstract N2 - In spite of technical advances that have provided increases in orders of magnitude in sequencing coverage, microbial ecologists still grapple with how to interpret the genetic diversity represented by the 16S rRNA gene. Two widely used approaches put sequences into bins based on either their similarity to reference sequences (i.e., phylotyping) or their similarity to other sequences in the community (i.e., operational taxonomic units [OTUs]). In the present study, we investigate three issues related to the interpretation and implementation of OTU-based methods. First, we confirm the conventional wisdom that it is impossible to create an accurate distance-based threshold for defining taxonomic levels and instead advocate for a consensus-based method of classifying OTUs. Second, using a taxonomic-independent approach, we show that the average neighbor clustering algorithm produces more robust OTUs than other hierarchical and heuristic clustering algorithms. Third, we demonstrate several steps to reduce the computational burden of forming OTUs without sacrificing the robustness of the OTU assignment. Finally, by blending these solutions, we propose a new heuristic that has a minimal effect on the robustness of OTUs and significantly reduces the necessary time and memory requirements. The ability to quickly and accurately assign sequences to OTUs and then obtain taxonomic information for those OTUs will greatly improve OTU-based analyses and overcome many of the challenges encountered with phylotype-based methods.
http://aem.asm.org/content/77/10/3219.abstract N2 - In spite of technical advances that have provided increases in orders of magnitude in sequencing coverage, microbial ecologists still grapple with how to interpret the genetic diversity represented by the 16S rRNA gene. Two widely used approaches put sequences into bins based on either their similarity to reference sequences (i.e., phylotyping) or their similarity to other sequences in the community (i.e., operational taxonomic units [OTUs]). In the present study, we investigate three issues related to the interpretation and implementation of OTU-based methods. First, we confirm the conventional wisdom that it is impossible to create an accurate distance-based threshold for defining taxonomic levels and instead advocate for a consensus-based method of classifying OTUs. Second, using a taxonomic-independent approach, we show that the average neighbor clustering algorithm produces more robust OTUs than other hierarchical and heuristic clustering algorithms. Third, we demonstrate several steps to reduce the computational burden of forming OTUs without sacrificing the robustness of the OTU assignment. Finally, by blending these solutions, we propose a new heuristic that has a minimal effect on the robustness of OTUs and significantly reduces the necessary time and memory requirements. The ability to quickly and accurately assign sequences to OTUs and then obtain taxonomic information for those OTUs will greatly improve OTU-based analyses and overcome many of the challenges encountered with phylotype-based methods.
http://aem.asm.org/content/77/10/3219.abstract N2 - In spite of technical advances that have provided increases in orders of magnitude in sequencing coverage, microbial ecologists still grapple with how to interpret the genetic diversity represented by the 16S rRNA gene. Two widely used approaches put sequences into bins based on either their similarity to reference sequences (i.e., phylotyping) or their similarity to other sequences in the community (i.e., operational taxonomic units [OTUs]). In the present study, we investigate three issues related to the interpretation and implementation of OTU-based methods. First, we confirm the conventional wisdom that it is impossible to create an accurate distance-based threshold for defining taxonomic levels and instead advocate for a consensus-based method of classifying OTUs. Second, using a taxonomic-independent approach, we show that the average neighbor clustering algorithm produces more robust OTUs than other hierarchical and heuristic clustering algorithms. Third, we demonstrate several steps to reduce the computational burden of forming OTUs without sacrificing the robustness of the OTU assignment. Finally, by blending these solutions, we propose a new heuristic that has a minimal effect on the robustness of OTUs and significantly reduces the necessary time and memory requirements. The ability to quickly and accurately assign sequences to OTUs and then obtain taxonomic information for those OTUs will greatly improve OTU-based analyses and overcome many of the challenges encountered with phylotype-based methods.
http://aem.asm.org/content/77/10/3219.abstract N2 - In spite of technical advances that have provided increases in orders of magnitude in sequencing coverage, microbial ecologists still grapple with how to interpret the genetic diversity represented by the 16S rRNA gene. Two widely used approaches put sequences into bins based on either their similarity to reference sequences (i.e., phylotyping) or their similarity to other sequences in the community (i.e., operational taxonomic units [OTUs]). In the present study, we investigate three issues related to the interpretation and implementation of OTU-based methods. First, we confirm the conventional wisdom that it is impossible to create an accurate distance-based threshold for defining taxonomic levels and instead advocate for a consensus-based method of classifying OTUs. Second, using a taxonomic-independent approach, we show that the average neighbor clustering algorithm produces more robust OTUs than other hierarchical and heuristic clustering algorithms. Third, we demonstrate several steps to reduce the computational burden of forming OTUs without sacrificing the robustness of the OTU assignment. Finally, by blending these solutions, we propose a new heuristic that has a minimal effect on the robustness of OTUs and significantly reduces the necessary time and memory requirements. The ability to quickly and accurately assign sequences to OTUs and then obtain taxonomic information for those OTUs will greatly improve OTU-based analyses and overcome many of the challenges encountered with phylotype-based methods.
http://bioinformatics.oxfordjournals.org/content/early/2011/01/13/bioinformatics.btq725.abstract N2 - Motivation: With the advancements of next-generation sequencing technology, it is now possible to study samples directly obtained from the environment. Particularly, 16S rRNA gene sequences have been frequently used to profile the diversity of organisms in a sample. However, such studies are still taxed to determine both the number of operational taxonomic units (OTUs) and their relative abundance in a sample.Results: To address these challenges, we propose an unsupervised Bayesian clustering method termed Clustering 16S rRNA for OTU Prediction (CROP). CROP can find clusters based on the natural organization of data without setting a hard cut-off threshold (3method to several datasets, we demonstrate that CROP is robust against sequencing errors and that it produces more accurate results than conventional hierarchical clustering methods.Availability and Implementation: Source code freely available at the following URL: http://code.google.com/p/crop-tingchenlab/, implemented in C++ and supported on Linux and MS Windows.Contact: tingchen@usc.eduSupplementary information: Supplementary data are available at Bioinformatics online.
http://bioinformatics.oxfordjournals.org/content/early/2011/01/13/bioinformatics.btq725.abstract N2 - Motivation: With the advancements of next-generation sequencing technology, it is now possible to study samples directly obtained from the environment. Particularly, 16S rRNA gene sequences have been frequently used to profile the diversity of organisms in a sample. However, such studies are still taxed to determine both the number of operational taxonomic units (OTUs) and their relative abundance in a sample.Results: To address these challenges, we propose an unsupervised Bayesian clustering method termed Clustering 16S rRNA for OTU Prediction (CROP). CROP can find clusters based on the natural organization of data without setting a hard cut-off threshold (3method to several datasets, we demonstrate that CROP is robust against sequencing errors and that it produces more accurate results than conventional hierarchical clustering methods.Availability and Implementation: Source code freely available at the following URL: http://code.google.com/p/crop-tingchenlab/, implemented in C++ and supported on Linux and MS Windows.Contact: tingchen@usc.eduSupplementary information: Supplementary data are available at Bioinformatics online.
http://bioinformatics.oxfordjournals.org/content/early/2011/01/13/bioinformatics.btq725.abstract N2 - Motivation: With the advancements of next-generation sequencing technology, it is now possible to study samples directly obtained from the environment. Particularly, 16S rRNA gene sequences have been frequently used to profile the diversity of organisms in a sample. However, such studies are still taxed to determine both the number of operational taxonomic units (OTUs) and their relative abundance in a sample.Results: To address these challenges, we propose an unsupervised Bayesian clustering method termed Clustering 16S rRNA for OTU Prediction (CROP). CROP can find clusters based on the natural organization of data without setting a hard cut-off threshold (3method to several datasets, we demonstrate that CROP is robust against sequencing errors and that it produces more accurate results than conventional hierarchical clustering methods.Availability and Implementation: Source code freely available at the following URL: http://code.google.com/p/crop-tingchenlab/, implemented in C++ and supported on Linux and MS Windows.Contact: tingchen@usc.eduSupplementary information: Supplementary data are available at Bioinformatics online.
http://bioinformatics.oxfordjournals.org/content/17/3/282.abstract N2 - Summary: We present a fast and flexible program for clustering large protein databases at different sequence identity levels. It takes less than 2 h for the all-against-all sequence comparison and clustering of the non-redundant protein database of over 560000 sequences on a high-end PC. The output database, including only the representative sequences, can be used for more efficient and sensitive database searches.Availability: The program is available from http://bioinformatics.burnham-inst.org/cd-hiContact: liwz@sdsc.edu or adam@burnham-inst.org
http://bioinformatics.oxfordjournals.org/content/17/3/282.abstract N2 - Summary: We present a fast and flexible program for clustering large protein databases at different sequence identity levels. It takes less than 2 h for the all-against-all sequence comparison and clustering of the non-redundant protein database of over 560000 sequences on a high-end PC. The output database, including only the representative sequences, can be used for more efficient and sensitive database searches.Availability: The program is available from http://bioinformatics.burnham-inst.org/cd-hiContact: liwz@sdsc.edu or adam@burnham-inst.org
http://bioinformatics.oxfordjournals.org/content/17/3/282.abstract N2 - Summary: We present a fast and flexible program for clustering large protein databases at different sequence identity levels. It takes less than 2 h for the all-against-all sequence comparison and clustering of the non-redundant protein database of over 560000 sequences on a high-end PC. The output database, including only the representative sequences, can be used for more efficient and sensitive database searches.Availability: The program is available from http://bioinformatics.burnham-inst.org/cd-hiContact: liwz@sdsc.edu or adam@burnham-inst.org
http://bioinformatics.oxfordjournals.org/content/22/13/1658.abstract N2 - Motivation: In 2001 and 2002, we published two papers (Bioinformatics, 17, 282–283, Bioinformatics, 18, 77–82) describing an ultrafast protein sequence clustering program called cd-hit. This program can efficiently cluster a huge protein database with millions of sequences. However, the applications of the underlying algorithm are not limited to only protein sequences clustering, here we present several new programs using the same algorithm including cd-hit-2d, cd-hit-est and cd-hit-est-2d. Cd-hit-2d compares two protein datasets and reports similar matches between them; cd-hit-est clusters a DNA/RNA sequence database and cd-hit-est-2d compares two nucleotide datasets. All these programs can handle huge datasets with millions of sequences and can be hundreds of times faster than methods based on the popular sequence comparison and database search tools, such as BLAST.Availability:http://cd-hit.orgContact:liwz@sdsc.edu
http://bioinformatics.oxfordjournals.org/content/22/13/1658.abstract N2 - Motivation: In 2001 and 2002, we published two papers (Bioinformatics, 17, 282–283, Bioinformatics, 18, 77–82) describing an ultrafast protein sequence clustering program called cd-hit. This program can efficiently cluster a huge protein database with millions of sequences. However, the applications of the underlying algorithm are not limited to only protein sequences clustering, here we present several new programs using the same algorithm including cd-hit-2d, cd-hit-est and cd-hit-est-2d. Cd-hit-2d compares two protein datasets and reports similar matches between them; cd-hit-est clusters a DNA/RNA sequence database and cd-hit-est-2d compares two nucleotide datasets. All these programs can handle huge datasets with millions of sequences and can be hundreds of times faster than methods based on the popular sequence comparison and database search tools, such as BLAST.Availability:http://cd-hit.orgContact:liwz@sdsc.edu
http://bioinformatics.oxfordjournals.org/content/22/13/1658.abstract N2 - Motivation: In 2001 and 2002, we published two papers (Bioinformatics, 17, 282–283, Bioinformatics, 18, 77–82) describing an ultrafast protein sequence clustering program called cd-hit. This program can efficiently cluster a huge protein database with millions of sequences. However, the applications of the underlying algorithm are not limited to only protein sequences clustering, here we present several new programs using the same algorithm including cd-hit-2d, cd-hit-est and cd-hit-est-2d. Cd-hit-2d compares two protein datasets and reports similar matches between them; cd-hit-est clusters a DNA/RNA sequence database and cd-hit-est-2d compares two nucleotide datasets. All these programs can handle huge datasets with millions of sequences and can be hundreds of times faster than methods based on the popular sequence comparison and database search tools, such as BLAST.Availability:http://cd-hit.orgContact:liwz@sdsc.edu
http://genomebiology.com/2010/11/10/R106
http://genomebiology.com/2010/11/10/R106
http://genome.cshlp.org/content/18/9/1509.abstract N2 - Ultra-high-throughput sequencing is emerging as an attractive alternative to microarrays for genotyping, analysis of methylation patterns, and identification of transcription factor binding sites. Here, we describe an application of the Illumina sequencing (formerly Solexa sequencing) platform to study mRNA expression levels. Our goals were to estimate technical variance associated with Illumina sequencing in this context and to compare its ability to identify differentially expressed genes with existing array technologies. To do so, we estimated gene expression differences between liver and kidney RNA samples using multiple sequencing replicates, and compared the sequencing data to results obtained from Affymetrix arrays using the same RNA samples. We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice to sequence each mRNA sample only once (i.e., using one lane). The information in a single lane of Illumina sequencing data appears comparable to that in a single array in enabling identification of differentially expressed genes, while allowing for additional analyses such as detection of low-expressed genes, alternative splice variants, and novel transcripts. Based on our observations, we propose an empirical protocol and a statistical framework for the analysis of gene expression using ultra-high-throughput sequencing technology.
http://genome.cshlp.org/content/18/9/1509.abstract N2 - Ultra-high-throughput sequencing is emerging as an attractive alternative to microarrays for genotyping, analysis of methylation patterns, and identification of transcription factor binding sites. Here, we describe an application of the Illumina sequencing (formerly Solexa sequencing) platform to study mRNA expression levels. Our goals were to estimate technical variance associated with Illumina sequencing in this context and to compare its ability to identify differentially expressed genes with existing array technologies. To do so, we estimated gene expression differences between liver and kidney RNA samples using multiple sequencing replicates, and compared the sequencing data to results obtained from Affymetrix arrays using the same RNA samples. We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice to sequence each mRNA sample only once (i.e., using one lane). The information in a single lane of Illumina sequencing data appears comparable to that in a single array in enabling identification of differentially expressed genes, while allowing for additional analyses such as detection of low-expressed genes, alternative splice variants, and novel transcripts. Based on our observations, we propose an empirical protocol and a statistical framework for the analysis of gene expression using ultra-high-throughput sequencing technology.
http://genome.cshlp.org/content/18/9/1509.abstract N2 - Ultra-high-throughput sequencing is emerging as an attractive alternative to microarrays for genotyping, analysis of methylation patterns, and identification of transcription factor binding sites. Here, we describe an application of the Illumina sequencing (formerly Solexa sequencing) platform to study mRNA expression levels. Our goals were to estimate technical variance associated with Illumina sequencing in this context and to compare its ability to identify differentially expressed genes with existing array technologies. To do so, we estimated gene expression differences between liver and kidney RNA samples using multiple sequencing replicates, and compared the sequencing data to results obtained from Affymetrix arrays using the same RNA samples. We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice to sequence each mRNA sample only once (i.e., using one lane). The information in a single lane of Illumina sequencing data appears comparable to that in a single array in enabling identification of differentially expressed genes, while allowing for additional analyses such as detection of low-expressed genes, alternative splice variants, and novel transcripts. Based on our observations, we propose an empirical protocol and a statistical framework for the analysis of gene expression using ultra-high-throughput sequencing technology.
http://bioinformatics.oxfordjournals.org/content/26/1/136.abstract N2 - Summary: High-throughput RNA sequencing (RNA-seq) is rapidly emerging as a major quantitative transcriptome profiling platform. Here, we present DEGseq, an R package to identify differentially expressed genes or isoforms for RNA-seq data from different samples. In this package, we integrated three existing methods, and introduced two novel methods based on MA-plot to detect and visualize gene expression difference.Availability: The R package and a quick-start vignette is available at http://bioinfo.au.tsinghua.edu.cn/software/degseqContact: xwwang@tsinghua.edu.cn; zhangxg@tsinghua.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online.
http://bioinformatics.oxfordjournals.org/content/26/1/136.abstract N2 - Summary: High-throughput RNA sequencing (RNA-seq) is rapidly emerging as a major quantitative transcriptome profiling platform. Here, we present DEGseq, an R package to identify differentially expressed genes or isoforms for RNA-seq data from different samples. In this package, we integrated three existing methods, and introduced two novel methods based on MA-plot to detect and visualize gene expression difference.Availability: The R package and a quick-start vignette is available at http://bioinfo.au.tsinghua.edu.cn/software/degseqContact: xwwang@tsinghua.edu.cn; zhangxg@tsinghua.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online.
http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
http://nar.oxfordjournals.org/content/35/21/7188.abstract
http://nar.oxfordjournals.org/content/35/21/7188.abstract
http://nar.oxfordjournals.org/content/35/21/7188.abstract
http://nar.oxfordjournals.org/content/35/21/7188.abstract
http://dx.doi.org/10.1371
http://dx.doi.org/10.1371
http://dx.doi.org/10.1371


BIBLIOGRAPHY

[153] P. I. Diaz, N. I. Chalmers, A. H. Rickard, C. Kong, C. L.

Milburn, R. J. Palmer, and P. E. Kolenbrander. Molec-

ular Characterization of Subject-Specific Oral Mi-

croflora during Initial Colonization of Enamel. Ap-

plied and Environmental Microbiology, 72(4):2837–2848,

2006. 66

[154] R. J. Case, Y. Boucher, I. Dahllof, C. Holmstrom, W. F.

Doolittle, and S. Kjelleberg. Use of 16S rRNA and

rpoB Genes as Molecular Markers for Microbial

Ecology Studies. Applied and Environmental Microbiol-

ogy, 73(1):278–288, 2007. 66

[155] D. Sweet, M. Lorente, J. A. Lorente, A. Valenzuela, and

E. Villanueva. An Improved Method to Recover

Saliva from Human Skin: The Double Swab Tech-

nique. Journal of Forensic Sciences, 42(2):320–2, 1997.

98

[156] L. Abusleme, B-Y. Hong, A. Dupuy, L. Strausbaugh, and

P. Diaz. Influence of DNA extraction on oral mi-

crobial profiles obtained via 16S rRNA gene se-

quencing. Journal of Oral Microbiology, 6(0), 2014. 98

[157] A. Edelmann, U. Eichenlaub, S. Lepek, D. H. Krüger, and
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8.1 Streptococci species/strains found by rpoB1 and 16S

rRNA

Table 8.1: Streptococci species/strains found by rpoB1 and 16S rRNA

RpoB1 16S rRNA

Streptococcus agalactiae GD201008-001 Streptococcus constellatus clone
Streptococcus anginosus isolate VS113A Streptococcus constellatus gene

Streptococcus anginosus Streptococcus mutans clone WWC C1MKM077
Streptococcus anginosus strain CIP Streptococcus salivarius strain HNL13

Streptococcus constellatus Streptococcus sp. 2944
Streptococcus cristatus Streptococcus sp. LMG 27206

Streptococcus dysgalactiae subsp. Streptococcus sp. LVRI 101
Streptococcus equi subsp. zooepidemicus Streptococcus sp. oral taxon 071

Streptococcus gordonii str. Challis Streptococcus thoraltensis strain
Streptococcus infantarius subsp.

Streptococcus intermedius JTH08
Streptococcus macedonicus ACA-DC

Streptococcus mitis B6 complete
Streptococcus mitis isolate VS779

Streptococcus mitis RNA polymerase
Streptococcus mutans UA159

Streptococcus oralis isolate VS113B
Streptococcus oralis isolate VS2971R
Streptococcus oralis isolate VS2971S

Streptococcus oralis isolate VS745
Streptococcus oralis isolate VS79

Streptococcus oralis strain ATCC 10557
Streptococcus oralis Uo5 complete

Streptococcus parasanguinis ATCC
Streptococcus parasanguinis FW213
Streptococcus parasanguinis isolate
Streptococcus pneumoniae 670-6B

Streptococcus pneumoniae gamPNI0373
Streptococcus pneumoniae R6, complete
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Streptococcus pneumoniae rpoB gene
Streptococcus pneumoniae SPNA45
Streptococcus pneumoniae ST556

Streptococcus pneumoniae strain NCTC
Streptococcus pneumoniae strain RifR-13
Streptococcus pneumoniae strain RifR-16
Streptococcus pneumoniae strain RifR-24
Streptococcus pneumoniae strain RifR-25
Streptococcus pneumoniae strain RifR-31
Streptococcus pneumoniae strain RifR-56
Streptococcus pneumoniae strain RifR-65
Streptococcus pseudopneumoniae IS7493

Streptococcus pyogenes A20
Streptococcus salivarius 57.I

Streptococcus salivarius CCHSS3
Streptococcus salivarius JIM8777

Streptococcus sanguinis isolate VS395
Streptococcus sanguinis

Streptococcus sanguinis SK36
Streptococcus sp. CSL 7508

Streptococcus suis S735
Streptococcus suis ST1

Streptococcus thermophilus MN-ZLW-002
Streptococcus uberis 0140J

8.2 Filtering at 10 sequences

In order to justify the choice of only keeping clusters containing 20 sequences or more, the

data was re-analysed keeping all clusters containing 10 sequences or more, to see if any

differences were observed. Table 8.2 compares the relative distance between individuals

for each experiment separately and both experiments combined. Only species with a p-

value <0.1 from a t-test between the samples from each individual or a BF <1 were used.

The differences between the relative distances from samples filtered at 20 sequences or 10

sequences are neglible indicating that the conservative approach of filtering at 20 sequences

is justified. Lowering the filtering threshold to 10 sequences risks adding error for no

reason. Table 8.3 shows the same comparison but only for both experiments combined with

species filtered at a p-value <0.01 and for each target separately and pairwise combinations

of targets. This corroborates the results presented above along with the choice of p-value

presented in section 6.2.1.
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Target Filtered 20 Filtered 10

Experiment 1

RpoB1 21.53 21.71

RpoB2 15.26 16.41

16S rRNA 44.06 48.36

Experiment 2

RpoB1 25.36 25.36

RpoB2 22.59 23.19

16S rRNA 51.25 54.66

Experiments comb.

RpoB1 22.44 22.85

RpoB2 15.13 15.79

16S rRNA 54.22 57.69

Table 8.2: Comparison of relative distance between individuals, per target, for
each experiment separately and both experiments combined. The relative distance
was calculated using the Euclidean distance and the Ward method of hierarchical clustering,
on the normalised (only for both experiments combined) and logged species abundance. Only
species with a p-value <0.1 from a t-test between the samples from each individual or a BF
<1 were used.

Target Filtered 20 Filtered 10

RpoB1 25.38 25.35

RpoB2 13.81 15.30

16S rRNA 57.36 60.91

RpoB1+rpoB2 32.02 29.70

RpoB2+16S rRNA 59.81 62.84

16S rRNA+rpoB1 60.90 66.24

Table 8.3: Comparison of relative distance between individuals, per target and
combined targets, for both experiments combined. The relative distance was calculated
using the Euclidean distance and the Ward method of hierarchical clustering, on the normalised
and logged species abundance. Only species with a p-value <0.01 from a t-test between the
samples from each individual or a BF <1 were used.

8.3 Cophenetic distance

The cophenetic distance can be used to test how accurately a dendrogram represents

the data. The closer the value is to one the better the representation. The cophenetic

distance was calculated for all dendrograms and the results are presented in Table 8.4.

Nearly all the values are over 0.99 indicating the dendrograms accurately represent the

data. The lowest value is seen for rpoB2, for both experiments combined, indicating that

the separation provided by rpoB2 is not as reliable as that of rpoB1 and 16S rRNA. This

further confirms the proposition made in section 6.5.2 that the best combination of targets
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is rpoB1 and 16S rRNA.

Target Cophenetic distance

Experiment 1

RpoB1 0.9937

RpoB2 0.9938

16S rRNA 0.9933

Experiment 2

RpoB1 0.9917

RpoB2 0.9956

16S rRNA 0.9984

Experiments comb.

RpoB1 0.9716

RpoB2 0.8028

16S rRNA 0.9948

16S rRNA+rpoB1 0.9933

Table 8.4: Cophenetic distance for dendrograms from the hierarchical clustering
of individual experiments and both experiments combined, per target.
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8.4 Protocols

8.4.1 PCR protocol

Shown in Table 8.5 are the quantites used for each component of the PCR mix, along

with their final concentrations for one reaction. Subsequently, shown in Table 8.6 are the

cycling parameters which were used for all PCR amplifications. For the annealing step, the

melting temperatures of the primer pairs were used, hence this value changes depending

on the primer pair used, (the melting temperatures for each primer pair can be found in

table 3.2).

Mix 1x Final conc.

Water 22 µl -

dNTP (2mM) 5 µl 0.2 mM

HF buffer (5x) 10 µl 1x

MgCl2 (50mM) 1 µl 1 mM

Forward primer 2.5 µl 0.5 µM

Reverse primer 2.5 µl 0.5 µM

DNA 5 µl -

DMSO 1.5 µl 3 %

Phusion polymerase 0.5 µl 0.02 U/µl

Table 8.5: PCR mix components for one reaction - where applicable the final concen-
tration of each component is included.

8.4.2 Acrylamide gel

The following protocol was used to analyse the PCR products on an acrylamide gel:

1. Make sure all glassware is clean (no dried polyacrylamide)

2. Take 1x plate with spacer and 1x glass plate and place together with bottoms of

both plates flat and level.
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Temperature (◦C) Time (seconds)

98 30

98 5
Tm 15
72 10

72 300

4 ∞

Table 8.6: PCR cycling parameters - Tm = melting temperature for the primer pair.
The middle 3 parameters were repeated for 35 cycles.

3. Place plates in plastic stand, ensuring plates are level then place the stand in the

stand grip making sure the plates are sealed.

4. Mix together all components (as shown in Table 8.7) adding the TEMED last, once

the TEMED has been added need to work fast.

5. Pipette mix into plate gap, fill to top, then add comb and wipe off any excess mix

that spills over.

6. Once gel has polymerised can then place it in the gel block (if only running one gel

need a plastic plate to finish the connection)

7. Add 1x TBE buffer making sure to fill up inside the gel holder as well as outside.

8. Remove comb/s.

9. Prepare samples for gel: 2 µl loading buffer and 5 µl sample, then load samples into

gel wells, including the ladder.

10. Attach power supply and run gel. In this case gels were run at 90V for 4.5 hours.

11. To stain gels add 2 drops of gel red and 1x TBE buffer and leave for at least 10

minutes.

12. Drain off buffer, rinse with fresh buffer then the gel is ready to be photographed

using UV light.

Gel mix 1.5x

Acrylamide mix (30%) 10.4 ml

Water 0.85 ml

TBE (10x) 1.25 ml

APS (10%) 81.25 µl

TEMED 16.25 µl

Table 8.7: Acrylamide gel mix components - 1.5x is used to ensure there is enough mix
for one complete gel.
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8.5 Scripts

8.5.1 filter cluster.py

filter cluster.py

1 # import libraries

2

3 import numpy as np # numerical python

4 import sys # needed for passing arguments

5 import re # needed for regular expressions

6 import os # for creating files , making directories etc

7

8 ################################################

9 # USAGE: python example.py <in_fn1 > <in_fn2 > <out_fn2 > <out_3 >

10 #fn1 - corresponds to file with multiple sequences >97%

11 #fn2 - corresponds to * sequence from each cluster

12

13 f=open(sys.argv[1],’r’)

14

15 # create a dictionary lookup to reduce memory load

16 f1=open(sys.argv[2],’r’)

17

18 toggle_rd_ln = True

19 seq_ref_dict = {}

20

21 while toggle_rd_ln:

22 tmp_ln = f1.readline ()

23 #print tmp_ln

24 if tmp_ln.find(’>’)!=-1: # we have found a seq ID line

25 # generate dict and save any existing data

26 try:

27 seq_ref_dict[seq [:19]] = seq_GTAC

28 print ’new key added to dict: ’,seq [:19]

29 except:

30 print ’initialise sequence ’

31 seq = tmp_ln.split(’>’)[1]. split(’ ’)[0]

32 seq_GTAC = tmp_ln.split(’>’)[1]. split(’ ’)[1]#.split(’\n ’)

[0]

33 else:

34 seq_GTAC += tmp_ln.split(’\n’)[0] # explicit could also just

.split()

35 # catch an empty redline command and exit

36 if tmp_ln ==’’:

37 toggle_rd_ln = False

38

39 f1_out=open(sys.argv[3],’w’)

40 f2_out=open(sys.argv[4],’w’)

41 f2_out.write(’Cluster\t’)

42 samples_nm = [’A1’,’A2’,’B1’,’B2’]

43 for item1 in samples_nm:

44 f2_out.write(item1+’\t’)

45 f2_out.write(’Species\t\n’)
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46

47 toggle_rd_ln = True

48 toggle_rd_clstr = True

49 iter=0

50 iter1 =0

51

52 while toggle_rd_ln:

53 while toggle_rd_clstr:

54 tmp_ln = f.readline ()

55 if tmp_ln.find(’Cluster ’)!=-1: # we have found a cluster ID

line

56 # start a new cluster

57 # write any data that exists

58 try:

59 #print iter

60 if iter >=19: #edit this number to change the sequence

filtering threshold

61 print ’saved:’,’>’+rep_seq2find

62 #print clstr_no , samples_dict

63 #print tmp_ln

64 try:

65 # gets a bit silly because we don’t have whole

sequence

66 # I had to manually edit the key length :19! beware

67 str1 = ’>’+rep_seq2find+’ ’+seq_ref_dict[

rep_seq2find ]+’\n’

68 f1_out.write(str1)

69 #print ’f1out ’,str1

70 except:

71 print ’check your dictionary ’

72 f2_out.write(’%i\t’%clstr_no)

73 #print samples_dict.keys()

74 #for key in samples_dict:

75 for nm in samples_nm:

76 f2_out.write(’%i\t’%samples_dict[nm])

77 f2_out.write(’species ’)

78 f2_out.write(’\n’)

79 except:

80 # no cluster exists , i.e 1st iteration

81 print "Initialise cluster "

82 # find cluster ID

83 clstr_no = int(re.findall(r’\d+’,tmp_ln)[0])

84 print ’Cluster: ’,clstr_no

85 # clear dictionaries and counters

86 iter=0

87 toggle_rd_clster = True

88 samples_dict ={}

89 for key in samples_nm:

90 samples_dict[key ]=0

91 else:

92 iter +=1

93 #print tier

94 # search for representative sequence
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95 rep_seq = re.findall(r’.\D{1}\d{1}_\D+_\d+.\d+\.\.\.\s\*’,

tmp_ln) #gramn and strep

96 #rep_seq = re.findall(r ’.\D{1}\d{1}_\d+\D+_\d+.\d+\.\.\.\s

\*’,tmp_ln) # 16S

97 if len(rep_seq)!=0:

98 # extract representative sequence to reference

99 rep_seq2find = re.findall(r’\D{1}\d{1}_\D+_\d+.\d+’,

rep_seq [0]) [0]

100 #rep_seq2find = re.findall(r ’\D{1}\d{1}_\d+\D+_\d+.\d+’,

rep_seq [0]) [0]

101 #print rep_seq

102 #print ’rep_seq ’,rep_seq2find

103 # for access to all the sequences

104 try:

105 seq_curr_iter = re.findall(r’\D{1}\d{1}_\D+_\d+.\d+’,

tmp_ln)[0]

106 #seq_curr_iter = re.findall(r ’\D{1}\d{1}_\d+\D+_\d+.\d

+’,tmp_ln)[0]

107 #print seq_curr_iter

108 except:

109 print ’failed to find sequence for this cluster ’

110 iter1 +=1

111 # search for samples present in cluster

112 try:

113 seq_sample= re.findall(r’.\D{1}\d{1}_’,tmp_ln)

114 except:

115 print ’reg. exp. error: the sample name is not

compatible ’

116 # update the dictionary

117 try:

118 samples_dict[seq_sample [0]. split(’>’)[1]. split(’_’)

[0]]+=1

119 except:

120 toggle_rd_clstr = False

121 # catch an empty readline command and exit

122 if tmp_ln ==’’:

123 # the file has been read

124 toggle_rd_ln = False

125

126 f1_out.close()

127 f2_out.close()

128

129 print ’failed to find sequences: ’, iter1

130 print ’script complete ’

8.5.2 sort cluster.py

sort cluster.py

1 # import libraries

2

3 import numpy as np # numerical python

4 import sys # needed for passing arguments
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5 import re # needed for regular expressions

6 import os # for creating files , making directories etc

7 import time # used for timing

8

9 # Functions

10

11 def gen_dict_species_sequence(blast_hit_fn , dict_temp = {},

debug_toggle = False):

12 f=open(blast_hit_fn ,’r’)

13 toggle_rd_ln = True

14 seq_spec_dict = {}

15 query_cntr = 0

16 nohits_cntr =0

17 query_str = ’’

18 query_str_meta = ’’

19 while toggle_rd_ln:

20 tmp_ln = f.readline ()

21 #print tmp_ln

22 if tmp_ln.find(’Query=’)!=-1: # we have found a seq Query line

23 # complex data structure generate a string with all Query

data

24 try:

25 # first save all existing data

26 # search the Query line to extract the info

27 # regular expression for 16S

28 query_seq = re.findall(r’\D{1}\d{1}_\d+\D+_\d+.\d+’,

query_str)

29 # extra info in case of duplicate sequences

30 query_meta = re.findall(r’\d{1}[_.:]\D{1}[_.:]\d{1}[_.:]\D+’,

query_str)

31 try:

32 species = query_str_meta.split(’|’)[8]. split(’\n’)[0].

strip(’,’)

33 except:

34 species = re.findall(r"\*\*\*\*\*\s\D{2}\s\D{4}\s\D{5}\s

\*\*\*\*\*",query_str_meta)[0]

35 query_meta = [’’]

36 nohits_cntr +=1

37 seq_spec_dict[query_seq [0][:19]. lower ()] = {’species ’:

species ,’meta’:query_meta [0]}# [:19]

38 if debug_toggle == True:

39 try:

40 print ’new dictionary entry: ’,query_seq [0][:19] ,

species

41 except:

42 pass

43 if raw_input(’test’) == ’q’:

44 sys.exit()

45 query_cntr +=1

46 except:

47 if query_cntr !=0:

48 print "Something failed with the Query: ", query_str

49

50 # once all pre existing data has been saved
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51 # empty the query_str_meta for the next sequence

52 query_str_meta = ’’

53 query_str = tmp_ln

54 else:

55 # if "Query =" is not in the line build the query meta str

56 try:

57 query_str_meta= query_str_meta+tmp_ln

58 except:

59 query_str_meta =’’

60 print ’waiting for a Query_str_meta init’

61 if tmp_ln ==’’:

62 toggle_rd_ln = False

63

64 print ’total queries: ’,query_cntr

65 print ’ of which were no hits: ’, nohits_cntr

66 return seq_spec_dict

67

68 #list_seqs=dict((x, list.count(x)) for x in list)

69 #for key in list_seqs.keys():

70 # a+= list_seqs[key]

71 #f1.close ()

72

73 ################################################

74 # USAGE: python example.py <in_fn1 > <in_fn2 > <in_fn3 > <out_fn2 > <

out_3 >

75 #fn1 - corresponds to file with multiple sequences >97%

76 #fn2 - corresponds to * sequence from each cluster

77 #fn3 - blast hit filename

78

79 # number of species identified in a cluster i.e 20

80 spec_per_cluster = 20

81

82 dict_species_sequence = gen_dict_species_sequence(blast_hit_fn=sys

.argv[3], dict_temp ={})

83

84 f=open(sys.argv[1],’r’)

85 f1=open(sys.argv[2],’r’)

86

87 print "Searched filename: ", sys.argv [2]

88 toggle_rd_ln = True

89 seq_ref_dict = {}

90 iter=0

91

92 while toggle_rd_ln:

93 tmp_ln = f1.readline ()

94 if tmp_ln.find(’>’)!=-1: # we have found a seq ID line

95 seq=tmp_ln.split(’>’)[1]. split(’ ’)[0]. lower()

96 seq_ref_dict[seq [:19]] = tmp_ln.split(’>’)[1]. split(’ ’)[1].

split(’\n’)[0]

97 iter +=1

98 else:

99 seq_ref_dict[seq [:19]]+= tmp_ln.split(’\n’)[0]

100 if tmp_ln ==’’:

101 toggle_rd_ln = False
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102

103 print ’Found: ’,iter , ’sequences ’

104

105 f1_out=open(sys.argv[4],’w’)

106 f2_out=open(sys.argv[5],’w’)

107 f2_out.write(’#’)

108 #f2_out.write(’Cluster\t ’)

109 samples_nm = [’A1’,’A2’,’B1’,’B2’]

110 for nm in samples_nm:

111 f2_out.write(nm+’\t’)

112 f2_out.write(’Species\t’)

113 f2_out.write(’Rep. Seq.\t\n’)

114

115 toggle_rd_ln = True

116 toggle_rd_clstr = True

117 iter=0

118 iter1 =0

119

120 print ’Searched filename: ’,sys.argv [1]

121

122 while toggle_rd_ln:

123 while toggle_rd_clstr:

124 tmp_ln = f.readline ()

125 if tmp_ln.find(’Cluster ’)!=-1: # we have found a cluster ID

line

126 # start a new cluster

127 # write any data that exists

128 try:

129 print ’Total seqs found:’, iter

130 if iter >= spec_per_cluster:

131 print ’saved:’,’>’+rep_seq2find

132 str1 = ’>’+rep_seq2find+’ ’+seq_ref_dict[rep_seq2find.

lower ()]+’\n’

133 f1_out.write(str1)

134 for nm in samples_nm:

135 f2_out.write(’%i\t’%samples_dict[nm])

136 try:

137 print rep_seq2find , ’ : ’,

138 dict_species_sequence_schnell[rep_seq2find.

lower()][’species ’]

139 f2_out.write(’%s\t’%dict_species_sequence_schnell[

rep_seq2find.lower()][’species ’]. strip())

140 except:

141 f2_out.write(’No species in blast file\t’)

142 f2_out.write(’%s\n’%rep_seq2find.lower())

143

144 print ’------------------------’

145 except:

146 # no cluster exists , i.e 1st iteration

147 print "Initialise cluster "

148

149 # find cluster ID

150 clstr_no = int(re.findall(r’\d+’,tmp_ln)[0])

151 print ’Cluster number: ’,clstr_no
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152 # clear dictionaries and counters

153 iter=0

154 toggle_rd_clster = True

155 samples_dict ={}

156 for key in samples_nm:

157 samples_dict[key ]=0

158

159 else:

160 iter +=1

161 # search for representative sequence

162 rep_seq = re.findall(r’.\D{1}\d{1}_\d+\D+_\d+.\d+\.\.\.\s

\*’,tmp_ln) # 16S

163 if len(rep_seq)!=0:

164 # extract representative sequence to reference

165 rep_seq2find = re.findall(r’\D{1}\d{1}_\d+\D+_\d+.\d+’,

rep_seq [0]) [0]

166 # for access to all the sequences

167 try:

168 seq_curr_iter = re.findall(r’\D{1}\d{1}_\d+\D+_\d+.\d+’,

tmp_ln)[0]

169 #print seq_curr_iter

170 except:

171 print ’failed to find sequence for this cluster ’

172 iter1 +=1

173

174 # search for samples present in cluster

175 try:

176 seq_sample= re.findall(r’.\D{1}\d{1}_’,tmp_ln)

177 except:

178 print ’reg. exp. error: the sample name is not

compatible ’

179

180 # update the dictionary

181 try:

182 samples_dict[seq_sample [0]. split(’>’)[1]. split(’_’)

[0]]+=1

183 except:

184 toggle_rd_clstr = False

185

186 # catch an empty readline command and exit

187 if tmp_ln ==’’:

188 # the file has been read

189 toggle_rd_ln = False

190

191 f1_out.close()

192 f2_out.close()

193

194 print ’failed to find sequences: ’, iter1

195 print ’script complete ’

8.5.3 adjust table.py

adjust table.py
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1 # import libraries

2

3 import numpy as np # numerical python

4 import sys # needed for passing arguments

5 import re # needed for regular expressions

6

7 #########################################

8 # USAGE: python adjust_table.py <data_file_name_input > <

file_name_output >

9

10 toggle_first_word_species = False

11 toggle_float = False

12 # load a data file with tab delimited columns

13 if toggle_float:

14 file = np.loadtxt(sys.argv[1], delimiter = ’\t’,comments = ’#’

,\

15 dtype = {’names ’:[’A1’,’A2’,’B1’,’B2’,’Species ’],\

16 ’formats ’:[’f4’,’f4’,’f4’,’f4’,’a100’]})

17

18 else:

19 file = np.loadtxt(sys.argv[1], delimiter = ’\t’,comments = ’#’

,\

20 dtype = {’names ’:[’A1’,’A2’,’B1’,’B2’,’Species ’],\

21 ’formats ’:[’i4’,’i4’,’i4’,’i4’,’a100’]})

22

23 # Generate output file

24 f1_out=open(sys.argv[2],’w’)

25 f1_out.write(’#A1\tA2\tB1\tB2\tSpecies\n’) # generate the file

header

26 print ’total clusters in file: ’,file.shape [0]

27 file.sort(order=’Species ’)

28

29 spec_list=file[’Species ’]. tolist ()

30 spec_list_tmp =[]

31

32 if toggle_first_word_species:

33 tmp_species=file["Species"].copy()

34

35 for i in np.arange(tmp_species.shape [0]):

36 tmp_species[i]= tmp_species[i].strip(’"’).split ()[0]

37

38 file[’Species ’] = tmp_species

39 spec_list=tmp_species.tolist ()

40

41

42 i=0

43 for item in spec_list: # cycle through all entries input file

44 if spec_list_tmp.count(item)==0: # if no entry exists for the

species create one

45 tmp=np.compress(file[’Species ’]==item ,file) # filter all

entries based on species name

46 # require statistics for each species

47 A1=tmp[’A1’].sum()

48 A2=tmp[’A2’].sum()
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49 B1=tmp[’B1’].sum()

50 B2=tmp[’B2’].sum()

51 if toggle_float:

52 s=’%.4f\t%.4f\t%.4f\t%.4f\t%s\n’%(A1,A2,B1,B2,item) #

string for output file

53 else:

54 s=’%i\t%i\t%i\t%i\t%s\n’%(A1,A2,B1,B2,item) # string

for output file

55 f1_out.write(s)

56 i+=1 # iterator , count number of different species

57

58 spec_list_tmp.append(item) # append this species to the

tmp_list to avoid repeat

59

60 print ’total different Species identified: ’,i

8.5.4 concatenate.py

concatenate.py

1 # import libraries

2

3 import numpy as np # numerical python

4 import sys # needed for passing arguments

5 import re # needed for regular expressions

6

7 ################################################

8 # USAGE: python concatenate.py <gramn_table_sum.txt > <

gramn2_table_sum.txt > <test_debug.txt > <test.txt >

9 # argv1 = table

10 # argv2 = table

11 # argv3 = generated file A1 -> B4 SPECIES species_f1 species_f2

12 # argv4 = generated file A1 -> B4 SPECIES

13 # The reason for two outputs is for partial matches so you can

check them

14

15 # load a data file with tab delimited columns

16 file1 = np.loadtxt(sys.argv[1], delimiter = ’\t’,comments = ’#’,\

17 dtype = {’names’:[’A1’,’A2’,’B1’,’B2’,’Species ’],\

18 ’formats ’:[’i4’,’i4’,’i4’,’i4’,’a100’]})

19

20 # load a data file with tab delimited columns

21 file2 = np.loadtxt(sys.argv[2], delimiter = ’\t’,comments = ’#’,\

22 dtype = {’names’:[’A3’,’A4’,’B3’,’B4’,’Species ’],\

23 ’formats ’:[’i4’,’i4’,’i4’,’i4’,’a100’]})

24

25 # Generate output file

26 out_file=open(sys.argv[3],’w’)

27 out_file.write(’#A1\tA2\tB1\tB2\tA3\tA4\tB3\tB4\tSpeciesMatch\t%s\

t%s\n’%(sys.argv[1],sys.argv [2])) # generate the file header

28 out_file1=open(sys.argv[4],’w’)

29 out_file1.write(’# Two files concatenated: %s , %s \n’%(sys.argv

[1],sys.argv [2])) # log the filenames of those combined
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30 out_file1.write(’#A1\tA2\tB1\tB2\tA3\tA4\tB3\tB4\tSpecies\n’) #

generate the file header

31

32 file1.sort(order=’Species ’)

33 file2.sort(order=’Species ’)

34

35 # make a copy of file1 & file2 this identifies unmatched species

36 file1copy= file1.copy() # not needed but useful for debugging

37 file2copy= file2.copy()

38

39 # iterate through all species in file1 and test file2 for matches

40 for iter1 in file1[’Species ’]:

41 match = False # switch to identify if a match has been located

for this species

42 for iter2 in file2[’Species ’]:

43 # search for the string in file2 species

44 try:

45 # intelligent string search length limit

46 # search for a matching species name , match all characters

in file1

47 # file2 species can have more characters but will still

produce a match

48 temp = re.findall(iter2.strip()[:len(iter1)],iter1)

49 except:

50 try:

51 temp = re.findall(iter2 ,iter1)

52 except:

53 temp = ’’

54 # check for a match if so save it

55 if len(temp) > 0: # if a match has been found i.e has

characters

56 match = True # switch to identify a match has been found

57 print iter1 ,iter2

58 # locate statistics related to species

59 tmp_stats_f1=file1.compress(file1["Species"]== iter1)

60 tmp_stats_f2=file2.compress(file2["Species"]== iter2)

61 # save to the output files

62 s = ’%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%s\t%s\t%s\n’%(

tmp_stats_f1[’A1’],tmp_stats_f1[’A2’],tmp_stats_f1[’

B1’],tmp_stats_f1[’B2’],tmp_stats_f2[’A3’],

tmp_stats_f2[’A4’],tmp_stats_f2[’B3’],tmp_stats_f2[’

B4’],temp[0],iter1 ,iter2)

63 s1 = ’%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%s\n’%( tmp_stats_f1

[’A1’],tmp_stats_f1[’A2’],tmp_stats_f1[’B1’],

tmp_stats_f1[’B2’],tmp_stats_f2[’A3’],tmp_stats_f2[’

A4’],tmp_stats_f2[’B3’],tmp_stats_f2[’B4’],temp [0])

64 out_file.write(s)

65 out_file1.write(s1)

66 # keep a log of unmatched iter2 species

67 file2copy = file2copy.compress(file2copy["Species"]!=

iter2)

68 if match:

69 print ’match found ’ # some feedback

70 else:
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71 # no match found so save file1 species with no match in the

same format

72 tmp_stats_f1=file1.compress(file1["Species"]== iter1)

73 s = ’%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%s\t%s\t%s\n’%(

tmp_stats_f1[’A1’],tmp_stats_f1[’A2’],tmp_stats_f1[’B1’

],tmp_stats_f1[’B2’],0,0,0,0,iter1 ,iter1 ,’’)

74 s1 = ’%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%s\n’%( tmp_stats_f1[’

A1’],tmp_stats_f1[’A2’],tmp_stats_f1[’B1’],tmp_stats_f1[

’B2’],0,0,0,0,iter1)

75 out_file.write(s)

76 out_file1.write(s1)

77 # keep a log of unmatched file1 species

78 #file1copy = file1copy.compress(file1copy [" Species "]!= iter1)

# used for debugging

79

80 # include file2 unmatched species in the output files

81 for iter in file2copy:

82 s = ’%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%s\t%s\t%s\n’%(0,0,0,0,

iter[’A3’],iter[’A4’],iter[’B3’],iter[’B4’],iter[’Species ’

],’’,iter[’Species ’])

83 s1 = ’%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%s\n’%(0,0,0,0,iter[’A3’

],iter[’A4’],iter[’B3’],iter[’B4’],iter[’Species ’])

84 out_file.write(s)

85 out_file1.write(s1)

86

87 # close all open files

88 out_file.close ()

89 out_file1.close ()

8.5.5 rand.py

rand.py

1 #import libraries

2 import numpy as np # numerical python

3 import sys # needed for passing arguments

4 import re # needed for regular expressions

5

6 ################################################

7 # USAGE: python example.py <in_fn1 > <number_of_seq2select >

8 # fn1 - corresponds to * sequence from each cluster

9 # number_of_seq2select - 10/100/10000

10

11

12 f=open(sys.argv[1],’r’) # f is a readable object defined by the

first argument in this case

13 data=f.read() # data is a new object containing the content of f

14 #(in this case the first input file (fn1)) as one string

15

16 data_sp=data.split(’>’)[1:]

17 np.random.shuffle(data_sp)

18

19 f_out=open(’rand_ ’+sys.argv [1]. split(’.’)[0]+’.txt’,’w’)
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20 #try:

21 for item in data_sp [:int(sys.argv [2])]:

22 f_out.write(’>’+item)

23 #except:

24 # print ’total datapoints: ’,len(data_sp)

25 # print ’requested random sample: ’,int(sys.argv [2])

26 f.close()

27 f_out.close ()
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