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Model Selection

Search for the best of a number of models:

Cross-validation is essentially hypothesis testing.
— Learn a hypothesis/model from the training data.
— Test it on the data that was left out.

Other model selection strategies are also possible — eg Bayesian
Model Selection.

The complexity of the best model depends on how much data is
available.



Models of brain data

« Currently in neuroimaging, most models are for single
voxels (ile mass-univariate).
— Lots of separate models
— Assumes independence among voxels.
— Simple interpretation of differences

 The alternative is to model all the data.
— Multivariate
— More difficult to interpret

« Simplifying principles may emerge from more complex
models.



UNIVARIATE OR MULTIVARIATE?



Are biological structures multivariate?

« Eventual shape is a result of growth.
« Growth is a result of gene expression and other factors.
« Each gene may be expressed in more than one voxel.

 We have known for a long time that, eg, left leg length is
correlated with right leg length.

It is, however, far more necessary to bear in mind that there are many
unknown laws of correlation of growth, which, when one part of the
organisation is modified through variation, and the modifications are
accumulated by natural selection for the good of the being, will cause

other modifications, often of the most unexpected nature (C. Darwin,
1859).
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Can male-female differences be localised?
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SOME MULTIVARIATE METHODS



Fisher’s Linear Discriminant
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Feature 2
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P(y=0[x) = p(x,y=0)/p(x)
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Generative Model for Discrimination

» Generative:
P(t=1|x) =p(x|t=1)P(t=1)
p(X|t=0)P(t=0) + p(x|t=1)P(t=1)
Where X feature data
t prediction

« Discriminative:
— Directly learns to give P(t=1|x)
— We are not normally interested in all the variables
needed to represent within-group variability.

— Only after a discriminative direction.



Linear Discrimination
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Probabilistic Approaches
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Regression

Feature 2
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Gaussian Processes for Machine Learning

Book by Rasmussen & Williams available for free online at:
http://www.gaussianprocess.org/gpml

MATLAB code for regression and
classification is also available.

Regression is relatively simple, but two
approaches to classification are included.

— Laplace Approximation
— Expectation Propagation — more accurate

A Variational Bayes approach to GP classification
is described in Bishop’s PRML book.

Carl Edward Rasmussen and Christopher K. I. Williams


http://www.gaussianprocess.org/gpml

TYPES OF FEATURES



Ugly Duckling Theorem

« An argument asserting that classification is

Impossible without some sort of bias.

Watanabe, Satosi (1969). Knowing and Guessing: A Quantitative
Study of Inference and Information. New York: Wiley. pp. 376-377.

7.6. THEOREM OF THE UGLY DUCKLING

The purposes of this section is to show that from the formal point of view
there exists no such thing as a class of similar objects in the world, insofar as
all predicates (of the same dimension) have the same importance. Conversely,
if we acknowledge the empirical existence of classes of similar objects, it
means that we are attaching nonuniform importance to various predicates,
and that this weighting has an extralogical origin.

»
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How would the data be preprocessed to
reveal usefulfeatures’P
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2D Example
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Jacobian Determinants (relative volumes)




“Scalar Momenta”(Jacobian scaled residuals
from diffeomorphisms)
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Reconstructed from Template & Residuals




Original Examples




Predicting Age

8-Fold Cross-Validation
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Predicting Sex

Gaussian Process (EP)
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MINING HOSPITAL IMAGES



Basic

*Good quality images

*Well controlled experiments
*Typically one scan per subject
*Mostly healthy subjects

*No major pathologies




Hospital scans are a bit crappy




Movement
Artifact

Patients move in the
scanner.

Data is very hard to
make use of.

“Disease signature” of Parkinsons.



Few fully automated algorithms can make
good use of hospital data.

* Most algorithms expect T1-weighted MRI with
1mm isotropic resolution.

* They do a poor job with hospital scans.

« More work Is needed.



Same subject, different MRI contrasts,
different image orientations.

Poor through-plane resolution

Good in-plane
resolution —



Recovering
Information

Several approaches for super-
resolution.

Recover higher resolution
signal from several low-
resolution images taken from
different views.

Work so far has assumed that
all images are of the same
modality.

Less straightforward for multi-
modal data.
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Motion-Robust Super-
resolution Magnetic Resonance
Imaging

Tutorial at ISBI12013

MOTIVATION

Technical innovations overcoming the limitations of existing medical imaging technology will enable improved diagnosis, monitoring and
therapeutic intervention assessment in medicine. Ultimately, it will offer better clinical care for patients. Magnetic resonance imaging (MRI)isa
non-invasive imaging modality that generates a unique range of contrast to evaluate many organs, structures, and anomalies in vivo. The use of
MRI, however, has been limited mainly by two factors: the relatively low spatial resolution achievable and its sensitivity to motion. .2

The sensitivity to motion makes it highly challenging to acquire good quality scans when imaging newboms, children and non-cooperative
patients. In clinical practice, sedation and anesthesia can be used but lead to significantly increased risks, burden and costs. Poorly cooperative
subjects for which there is no clear direct benefit justifying the sedation cannot generally be imaged. Novel developments in research are

necessary to enable high quality scans in presence of motion




Generative Model for Resolution Recovery
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Simple 2D simulations with 8mm thick “slices”

o —
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