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Essential reading

Henson, R. N. (2007). Efficient experimental design for
MRI. Statistical parametric mapping: the analysis of
functional brain images (pp. 193-210). Academic Press.

This book chapter covers the most common experimental designs

along with how to efficiently design your experiments such that you
maximize your chances of obtaining significant results.

Note the answers to ‘common questions’ at the end of this
chapter.
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Overview of SPM

Statistical parametric map (SPM)

Research question: Design matrix
Which neuronal structures support T
face recognition?
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Overview

e (Categorical designs

Subtraction - Pure insertion, evoked / differential responses
Conjunction - Testing multiple hypotheses



Cognitive subtraction

e Aim:
— Neuronal structures underlying a single process P (e.g., face recognition)?

e Procedure:
— Contrast: [Task with P] — [control task without P | = P
-> the critical assumption of ,pure insertion®

e Example: [Task with P] — [task without P | = P
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Cognitive subtraction: Baseline problems

Which neuronal structures support face recognition ?

e Distant® stimuli

,Queen!® ,2Aunt Jenny?*

e Same stimuli, different task

o

s

Name Person! Name Gender!

= Several components differ!

= P implicit in control condition”?

= Interaction of task and stimuli (i.e. do task
differences depend on stimuli chosen)?
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A categorical analysis

Experimental design

Face viewing F
Object viewing O

F - O = Face recognition
O - F = Object recognition

...under assumption of pure insertion

1a. Faces > Objects
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e (Categorical designs

Subtraction
Conjunction

e Parametric designs

Linear
Nonlinear

e Factorial designs

Categorical
Parametric

Overview

- Pure insertion, evoked / differential responses
- Testing multiple hypotheses

- Adaptation, cognitive dimensions
- Polynomial expansions, neurometric functions

- Interactions and pure insertion
- Linear and nonlinear interactions
- Psychophysiological Interactions
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Conjunctions

e One way to minimize the baseline/pure insertion problem is to isolate the
same process by two or more separate comparisons, and inspect the
resulting simple effects for commonalities

¢ A test for such activation common to several independent contrasts is called
“conjunction”

e Conjunctions can be conducted across a whole variety of different contexts:
¢ tasks
e stimuli
® senses (vision, audition)
® ctc.

e Note: the contrasts entering a conjunction must be orthogonal (this is
ensured automatically by SPM)
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Conjunctions

Example: Which neural structures support object recognition,
independent of task (naming vs. viewing)?

Task (1/2)

Viewing Naming

®)p
= ¢

Stimuli (A/B)

Objects Colours




Task (1/2)

Viewing Naming
__» | A A2
g 2 | Visual Processing V | Visual Processing Vv
= 8 Phonological Retrieval P
>
£ B1 B2
@ % Visual Processing V Visual Processing V
% Object Recognition R | Phonological Retrieval P
O Object Recognition R
Which neural structures support | S
object recognition? Price et al. 1997 Common objett
" — 5 Fecognition response (R)
(Object - Colour viewing) [B1 - A1] o vl
& LT L
(Object - Colour naming)  [B2 — A2] | H
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Conjunctions

SPMB8 (siglesias): Stats: Results
Nullhyptoassess
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Two types of conjunctions

e Test of global null hypothesis:
Significant set of consistent effects

“Which voxels show effects of similar direction
(but not necessarily individual significance)
across contrasts?”

Null hypothesis: No contrast is significant: k = O

does not correspond to a logical AND !

p(A1-A2) < o

B1-B2

A A A A A A A >

........ D eeeeessssnsnns TP(BI-B2) <

Al-A2

Friston et al. (2005). Neuroimage, 25:661-667.
Nichols et al. (2005). Neuroimage, 25:653-660.
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e (Categorical designs

Subtraction
Conjunction

e Parametric designs

Linear
Nonlinear

e Factorial designs

Categorical
Parametric

Overview

- Pure insertion, evoked / differential responses
- Testing multiple hypotheses

- Adaptation, cognitive dimensions
- Polynomial expansions, neurometric functions

- Interactions and pure insertion
- Linear and nonlinear interactions
- Psychophysiological Interactions
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Stimuli (A/B)

Objects Colours

Main effects and interactions

Task (1/2)

Viewing Naming

A1

A2

B1

B2

e Main effect of task: (A1 + B1) - (A2 + B2)

¢ Main effect of stimuli: (A1 +A2) - (B1 + B2)

¢ |nteraction of task and stimuli:
Can show a failure of pure insertion

(A1 - B1) - (A2 — B2)



Stimuli (A/B)

Objects Colours

Task (1/2)
Viewing Naming
A1 A2

B1 B2

Main effect of task:

(A1 +B1) — (A2 + B2)

Factorial design

222 (1ype) name

00S (T} : Positive effect of condition_1/(~

007 {T}: Positive effect of Stimulus_1
008 {T} : Positive Interaction: Task x S

e
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Stimuli (A/B)

Objects Colours

Task (1/2)
Viewing Naming
A1 A2

B1 B2

Main effect of stimuli:
(A1 +A2)-(B1+B2)

Factorial design

##F (type) - name

Q0S {T}: Positive effect of condition_1 ~
006 : Positive effect of Task_1

008 {T}: Positive Interaction: Task x St
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Stimuli (A/B)

Task (1/2)

Viewing Naming

Factorial design

222 (1ype}  name

00S (T} : Positive effect of condition_1

-~

n 008 (T} : Positive effect of Task_1
8 007 : Positive effect of Stimulus_1
5 A1 A2
@)
wn
kS) B1 B2
D
0
@)
Interaction of task and stimuili: 4 .

(A1-B1) - (A2 — B2)
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Main effects and interactions

Task (1/2)
Viewing Naming e Main effect of task: (A1 + B1) - (A2 + B2)

(7p)
o 5 e Main effect of stimuli: A1+ A2) - (B1 + B2
o 2 A1 AD ( ) —( )
< 8
= ¢ [nteraction of task and stimuli:
E § B1 B2 Can show a failure of pure insertion
" o

® (A1 —B1)— (A2 - B2)

Is the inferotemporal region implicated in nteraction effect
i | | i ina?
phonological retrieval during object naming* . (Stimuli x Task)

Colours Objects Colours Objects

Viewing Naming -



Event-related TMRI




Overview

1. Block/epoch vs. event-related fMRI
2. (Dis)Advantages of efMRI



Block/epoch designs vs event-related designs

Block/epoch designs examine responses to series of similar stimuli
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Advantages of event-related fMRI

1. Randomised trial order



efMRI: Randomised trial order

Blocked designs may trigger expectations and cognitive sets

Unpleasant (U) Pleasant (P)

Intermixed designs can minimise this by stimulus randomisation

Pleasant (P) Unpleasant (U)  Unpleasant (U) Pleasant (P) Unpleasant (U)



Advantages of event-related fMRI

1. Randomised trial order

2. Post-hoc subjective classification of trials



efMRI: Post-hoc classification of trials

Study phase (visual stimuli)

—

apple -
| 9 hat
brain
| l - Participant
[ I cat response:
§ o
. . . I \ [}
Test phase (auditory stimuli) : [ ,was not shown

: : as picture”

hammer 1800 ms !

apple : 2500ms |

cat ,was shown as

' '  picture”
hat

]
brain

ltems with wrong memory of picture (,hat®) were associated with

more occipital activity at encoding than items with correct rejection (,brain®)

Gonsalves & Paller (2000) Nature Neuroscience



Advantages of event-related fMRI

1. Randomised trials order
2. Post-hoc subjective classification of trials

3. Some events can only be indicated by participant
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Advantages of event-related fMRI

1. Randomised trials order
Post-hoc subjective classification of trials

Some events can only be indicated by participant

s L D

Some events cannot be blocked due to stimulus context



efMRI: Stimulus context

Oddball




Advantages of event-related fMRI

1. Randomised trials order
Post-hoc subjective classification of trials
Some events can only be indicated by participant

Some events cannot be blocked due to stimulus context

a & 0D

More accurate model even for epoch/block designs?



“Event” model of block design

“Epoch” model assumes constant neural processes throughout block

-----
"""""
o* . -
.
S

P = Pleasant

. . . . U = Unpleasant
“Event” model may capture state-item interactions (with longer SOAs)




Modeling block designs: Epochs vs events

» Designs can be blocked or intermixed,

BUT models for blocked designs can be Sustained epoch “g/HSSiC”
epoch- or event-related fu;(;)c(tcig;rq

e Epochs are periods of sustained —_
stimulation (e.g, box-car functions);
Events are impulses (delta-functions)

S Series of events
e Near-identical regressors can be created Delta

by 1 ined hs, 2 id seri '
ofevens SOASE-39) """

e In SPM12, all conditions are specified in I
terms of their 1) onsets and 2) durations

... epochs: variable or constant duration Convolved
... events: zero duration | \/_r with HRF

-




Modeling block designs: Epochs vs events

e Blocks of trials can be modeled as boxcars
or runs of events

e BUT: interpretation of the parameter
estimates may differ

e Consider an experiment presenting words at
different rates in different blocks:

- An “epoch” model will estimate
parameter that increases with rate,
because the parameter reflects response
per block

- An “event” model may estimate
parameter that decreases with rate,
because the parameter reflects response
per word

Rate = 1/4s

Rate = 1/2s

p=5




Disadvantages of intermixed designs

1. Less efficient for detecting effects than blocked designs

2. Some psychological processes have to/may be better blocked
(e.g., if difficult to switch between states, or to reduce surprise effects)



Overview

1. Block/epoch vs. event-related fMRI
2. (Dis)Advantages of efMRI

3. GLM: Convolution

4. BOLD impulse response

5. Temporal Basis Functions

6. Timing Issues

7. Design Optimisation — “Efficiency”



BOLD impulse response

Function of blood oxygenation, flow,
volume

Peak (max. oxygenation) 4-6s
poststimulus; baseline after 20-30s

Initial undershoot can be observed
Similar across V1, A1, S1...
... but possible differences across:

- other regions
- individuals

<— Peak

Brief
Stimulus

Initial
Undershoot

0 d 10

Undershoot

20

PST (s)



BOLD impulse response

e Early event-related fMRI studies used
a long Stimulus Onset Asynchrony
(SOA) to allow BOLD response to

return to baseline

e However, overlap between
successive responses at short SOAs
can be accommodated if the BOLD
response is explicitly modeled,
particularly if responses are assumed
to superpose linearly

e Short SOAs are more sensitive; see
later

<— Peak

Brief
Stimulus

Initial
Undershoot

0 d 10

Undershoot

20

PST (s)



General Linear (Convolution) Model

sampled each scan

|




®

0 0 N — 0
‘ ‘ ‘ Time (s) ‘ ‘  Time(s) ‘ ‘ ‘ Time (s)
0 16 32 48 64 80 0 5 10 15 20 25 30 0 16 32 48 64 80

@20 = [/t~

expected BOLD response
= input function ® impulse response function (HRF)



Overview

1. Block/epoch vs. event-related fMRI
2. (Dis)Advantages of efMRI

3. GLM: Convolution

4. BOLD impulse response

5. Temporal Basis Functions

6. Timing Issues

7. Design Optimisation — “Efficiency”



Design efficiency

e HRF can be viewed as a filter
(Josephs & Henson, 1999)

* We want to maximise the signal
passed by this filter

e Dominant frequency of canonical HRF
s ~0.04 Hz

Power

= The most efficient design is a
sinusoidal modulation of neural
activity with period ~24s
(e.g., boxcar with 12s on/ 12s off)

0 0.0 0.1 0.15 0.2 0.25
Frequency (Hz)



Sinusoidal modulation, f = 1/33

Stimulus (“Neural”) HRF Predicted Data
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A very “efficient” design!



Blocked, epoch = 20 sec

Stimulus (“Neural”) HRF Predicted Data

A

|

X
|-
I

-"—'-
Twme Time (5) Teme (3)
0 8 48 8 0 10 1 20 25 K| 0 48 B

2 2
» X — »
8~ — 8~
| - | -
on on
il il
= =
Freq (Hz)
Fre# (Hz) 5 — ) 2 Freq (Hz)
005 01 015 02 005 01 015 02 005 01 015 02

Blocked-epoch (with small SOA) quite “efficient”



Blocked (80s), SOAmMin=4s, highpass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data

® I AN
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Very ineffective: Don’t have long (>60s) blocks!



Randomised, SOAMIn=4s, highpass filter = 1/120s

Stimulus (“Neural”) HRF Predicted Data

X
I

. Time (s)
0 32 84 96 128 160 0 5 10 15 20 25 30 0 32 84 96 128 160

005 01 0.15 02 005 01 0.15 02

Randomised design spreads power over frequencies



Design efficiency: Trial spacing

Design parametrised by:
i
p(t)  Probability of event |
-
at each SOA, _

Deterministic u““l“

p(t)=1 iff t=nSOAmiIn | v vy

Stationary stochastic k‘“‘
LA —

p(t)=constant
Dynamlc stochastic , -

p(t) varies (e.q., blocked)

Blocked designs most efficient! (with small SOAmiIn)



Design efficiency: Conclusions

Optimal design for one contrast may not be optimal for another

Blocked designs generally most efficient (with short SOAs, given optimal block
length is not exceeded)

However, psychological efficiency often dictates intermixed designs, and often
also sets limits on SOAs

With randomised designs, optimal SOA for differential effect (A-B) is minimal
SOA (>2 seconds, and assuming no saturation), whereas optimal SOA for main
effect (A+B) is 16-20s

Inclusion of null events improves efficiency for main effect at short SOAs (at
cost of efficiency for differential effects)

If order constrained, intermediate SOAs (5-20s) can be optimal

If SOA constrained, pseudorandomised designs can be optimal
(but may introduce context-sensitivity)



Checking your design efficiency
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e (Categorical designs

Subtraction
Conjunction

e Parametric designs

Linear
Nonlinear

e Factorial designs

Categorical
Parametric

Overview

- Pure insertion, evoked / differential responses
- Testing multiple hypotheses

- Adaptation, cognitive dimensions
- Polynomial expansions, neurometric functions

- Interactions and pure insertion
- Linear and nonlinear interactions
- Psychophysiological Interactions
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Parametric designs

Parametric designs approach the baseline problem by:
— Varying the stimulus-parameter of interest on a continuum, in multiple (n>2) steps...
— ... and relating measured BOLD signal to this parameter

Possible tests for such relations are manifold:
— Linear
— Nonlinear: Quadratic/cubic/etc. (polynomial expansion)
— Model-based (e.g. predictions from learning models)
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Parametric modulation of regressors by time

study parameter study parameter

study parameter

Zero order term

[y

=

'
-

0 200 400 600
scans

Second order (quadratic) term

° 1
2
P
1 . W
]
. | L”_| Uull L
-1
0 200 400 600
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Orthogonalised linear term
2
0
-2
0 200 400 600

scans

Biichel et al. 1998, Neurolmage 8:140-148

First order (linear) term

study parameter
o = N W

0 200 400 600
scans

Orthogonalised quadratic term
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0 200 400 600
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“User-specified” parametric modulation of
regressors

. Zaro oeder 1erm
|
Polynomial expansion % 0
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orthogonalisation
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study paramesor

0 100 200 200 200 500

Biichel et al. 1998, Neurolmage 8:140-148
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Investigating neurometric functions

(= relation between a stimulus property and the neuronal response)

Stimulus Stimulus Pain
Pain threshold: 410 mJ ~ « awareness intensity intensity
s -
$ ¢ el a b c
> g) -
w ”
o 0 ’/" ---------- ”/’ ’z
$ - / - ’
¢ - O [’ /’, ,/
* m |, ’,’ o
4 e ’
t PO P1 P2 P3 P4 PO P1 P2 P3 P4 PO P1 P2 P3 P4
300 400 50 800 . \ . . .
Lser energy [m] PO-P4: Variation of intensity of a laser stimulus applied to

P1 P2 P3 P4 the right hand (0, 300, 400, 500, and 600 mJ)

Buchel et al. 2002, J. Neurosci. 22:970-976
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Neurometric functions

| = Stimulus intensity
T i PO P1 P2 P3 P4
PO P1 P2 P3 P4

pain ntersity

XK - {—

. 2 Stimulus presence S
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P M P2 P2 M
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........
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Biichel et al. 2002, J. Neurosci. 22:970-976

+ + + - Pain intensity
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Model-based regressors

e (General idea:
generate predictions from a computational model, e.g. of learning

or decision-making

e Use these predictions to define regressors

¢ |nclude these regressors in a GLM and test for significant
correlations with voxel-wise BOLD responses
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e (Categorical designs

Subtraction
Conjunction

e Parametric designs

Linear
Nonlinear

e Factorial designs

Categorical
Parametric

Summary

- Pure insertion, evoked / differential responses
- Testing multiple hypotheses

- Adaptation, cognitive dimensions
- Polynomial expansions, neurometric functions

- Interactions and pure insertion
- Linear and nonlinear interactions
- Psychophysiological Interactions
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Thank you
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