Group Analyses

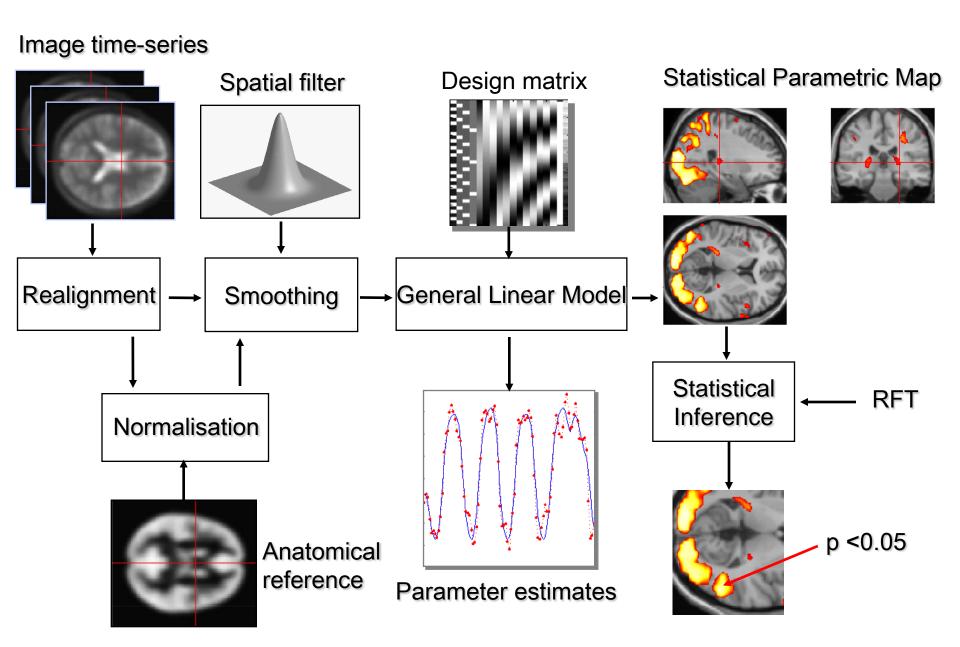
Guillaume Flandin

Wellcome Trust Centre for Neuroimaging
University College London

With many thanks to W. Penny, S. Kiebel, T. Nichols, R. Henson, J.-B. Poline, F. Kherif

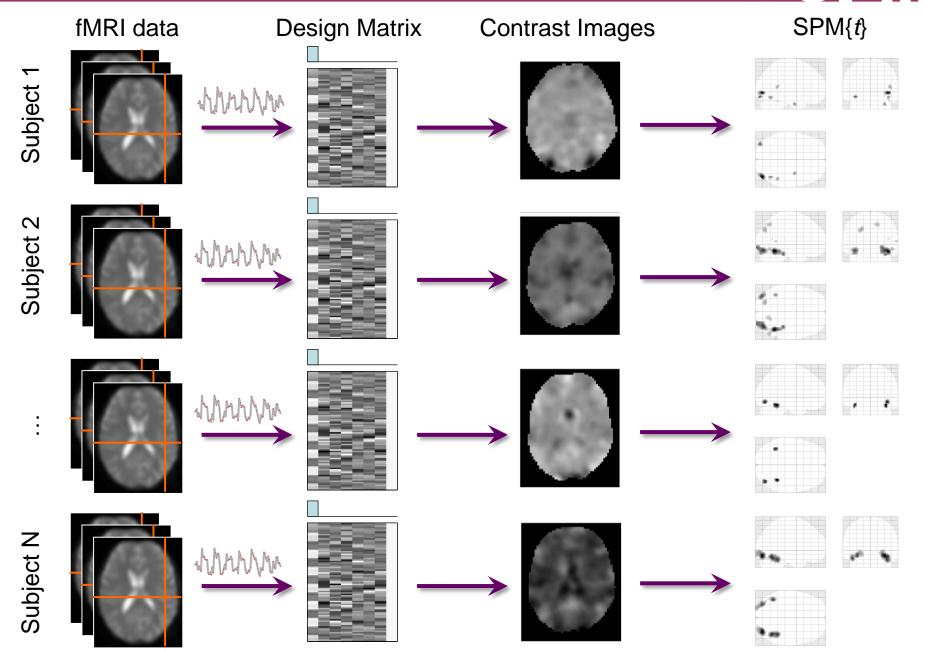
SPM Course Lausanne, April 2014

*SPM



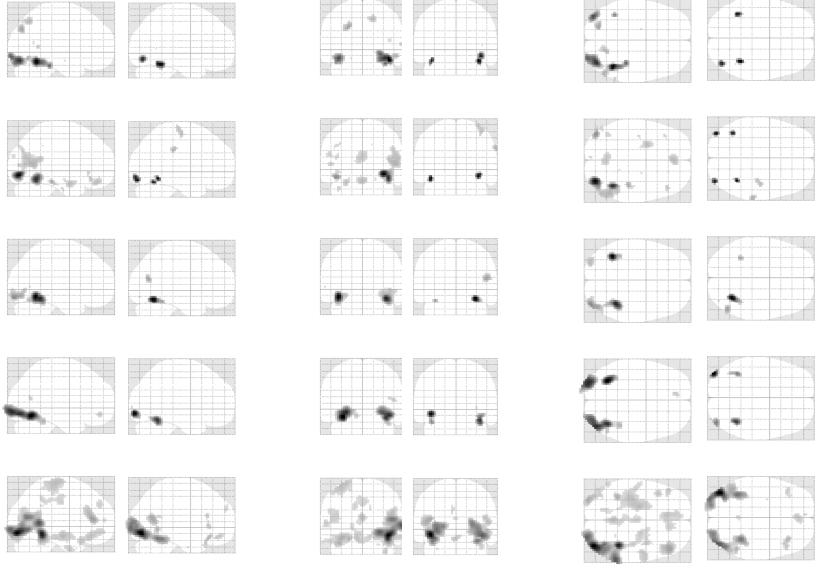
GLM: repeat over subjects

*SPM



*SPM

First level analyses (p<0.05 FWE):



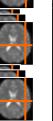
Data from R. Henson

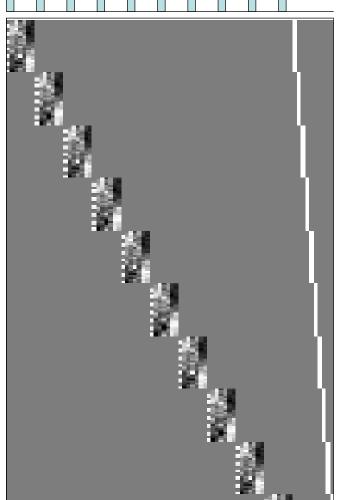
Fixed effects analysis (FFX)

Subject 1

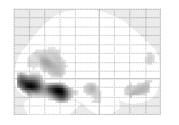
Subject 2

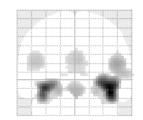
Subject 3





Modelling all subjects at once



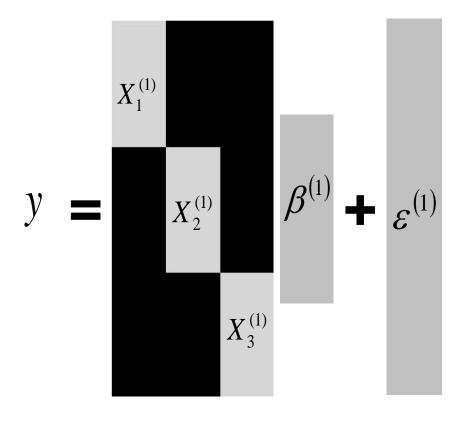




variance over subjects at each voxel

Fixed effects analysis (FFX)

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$



Modelling all subjects at once

- ✓ Simple model
- ✓ Lots of degrees of freedom
- Large amount of data
- Assumes common variance over subjects at each voxel

Fixed effects

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$

- Only one source of random variation (over sessions):
 - measurement error

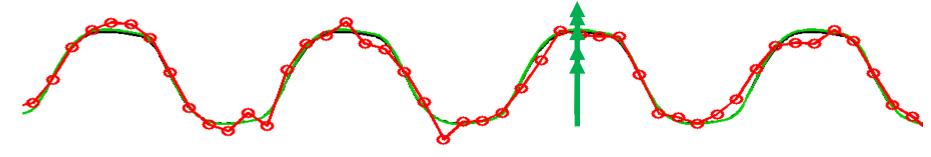
Within-subject Variance

☐ True response magnitude is *fixed*.

Random effects

$$y = X^{(1)} \beta^{(1)} + \varepsilon^{(1)}$$

$$\beta^{(1)} = X^{(2)}\beta^{(2)} + \varepsilon^{(2)}$$



- Two sources of random variation:
 - measurement errors

Within-subject Variance

response magnitude (over subjects)

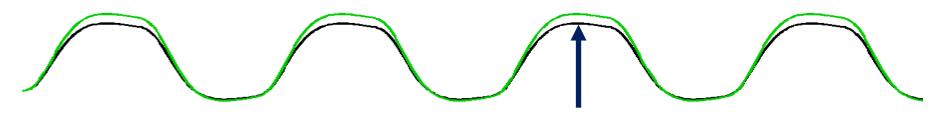
Between-subject Variance

- ☐ Response magnitude is *random*
 - each subject/session has random magnitude

Random effects

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$

$$\beta^{(1)} = X^{(2)}\beta^{(2)} + \varepsilon^{(2)}$$



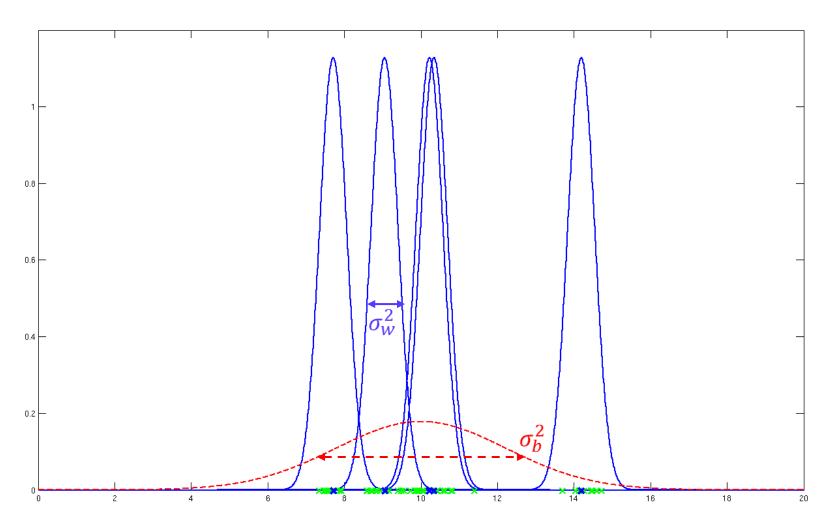
- Two sources of random variation:
 - measurement errors
 - response magnitude (over subjects)

Within-subject Variance

Between-subject Variance

- ☐ Response magnitude is *random*
 - each subject/session has random magnitude
 - > but population mean magnitude is fixed.

Random effects



Probability model underlying random effects analysis

Fixed vs random effects

With **Fixed Effects Analysis (FFX)** we compare the group effect to the *within-subject variability*. It is not an inference about the population from which the subjects were drawn.

With Random Effects Analysis (RFX) we compare the group effect to the *between-subject variability*. It is an inference about the population from which the subjects were drawn. If you had a new subject from that population, you could be confident they would also show the effect.

Fixed vs random effects

- ☐ Fixed isn't "wrong", just usually isn't of interest.
- Summary:
 - Fixed effects inference:
 - "I can see this effect in this cohort"
 - > Random effects inference:
 - "If I were to sample a new cohort from the same population I would get the same result"

Terminology

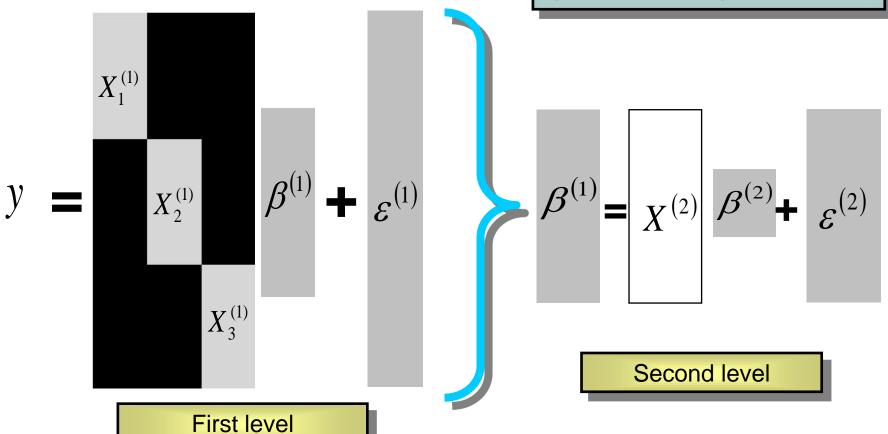
Hierarchical linear models:

- Random effects models
- Mixed effects models
- Nested models
- Variance components models
 - ... all the same
 - ... all alluding to multiple sources of variation (in contrast to fixed effects)

Hierarchical models

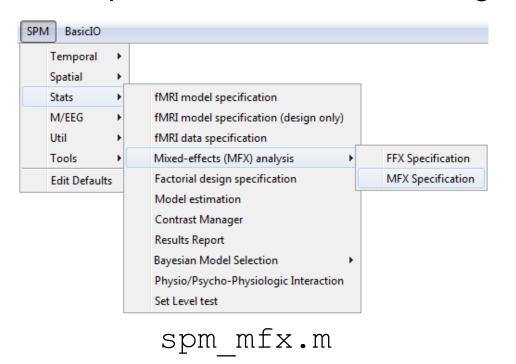
Example: Two level model

$$y = X^{(1)}\beta^{(1)} + \varepsilon^{(1)}$$
$$\beta^{(1)} = X^{(2)}\beta^{(2)} + \varepsilon^{(2)}$$



Hierarchical models

- Restricted Maximum Likelihood (ReML)
- Parametric Empirical Bayes
- Expectation-Maximisation Algorithm

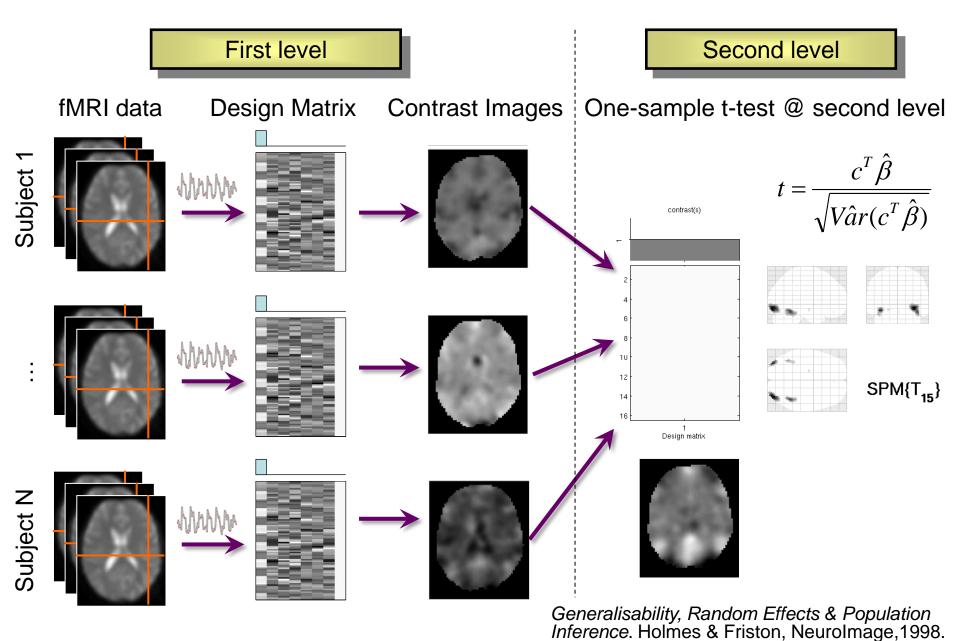


But:

- Many two level models are just too big to compute.
- And even if, it takes a long time!
- ➤ Any approximation?

Mixed-effects and fMRI studies. Friston et al., NeuroImage, 2005.

Summary Statistics RFX Approach



Summary Statistics RFX Approach

Assumptions

- The summary statistics approach is exact if for each session/subject:
 - Within-subjects variances the same
 - First level design the same (e.g. number of trials)
- Other cases: summary statistics approach is robust against typical violations.

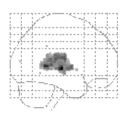
Mixed-effects and fMRI studies. Friston et al., Neurolmage, 2005.

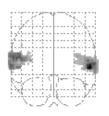
Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007. Simple group fMRI modeling and inference. Mumford & Nichols. NeuroImage, 2009.

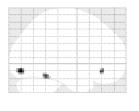
Summary Statistics RFX Approach

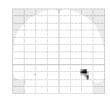
Robustness

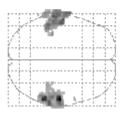
Summary statistics

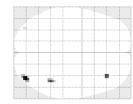


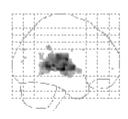


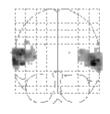


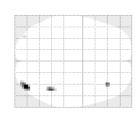


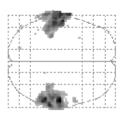


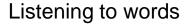












Viewing faces

Mixed-effects and fMRI studies. Friston et al., Neurolmage, 2005.

ANOVA & non-sphericity

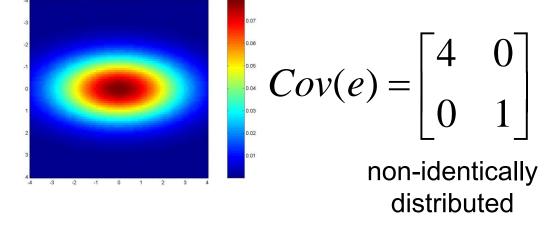
- One effect per subject:
 - Summary statistics approach
 - One-sample t-test at the second level
- More than one effect per subject or multiple groups:
 - Non-sphericity modelling
 - Covariance components and ReML

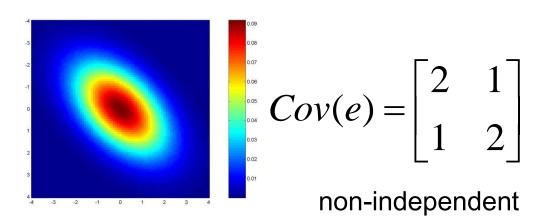
GLM assumes Gaussian "spherical" (i.i.d.) errors

sphericity = iid:
error covariance is
scalar multiple of
identity matrix:
Cov(e) = σ²I

$$Cov(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Examples for non-sphericity:

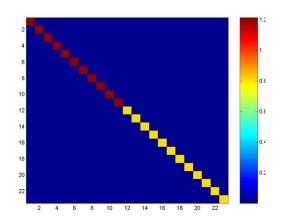




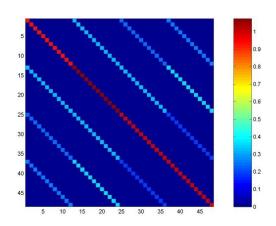
2nd level: Non-sphericity

Errors are independent
but not identical
(e.g. different groups (patients, controls))

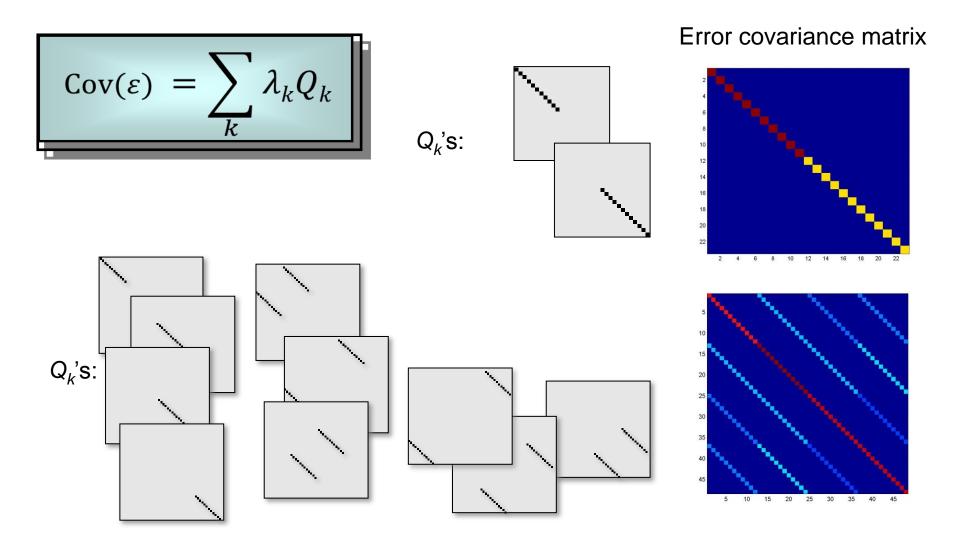
Error covariance matrix



Errors are not independent and not identical (e.g. repeated measures for each subject (multiple basis functions, multiple conditions, etc.))



2nd level: Variance components

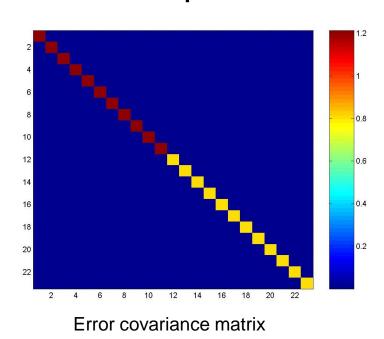


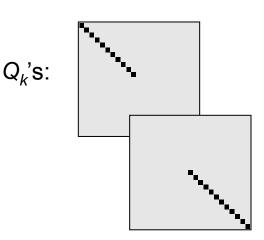
Example 1: between-subjects ANOVA

- Stimuli:
 - Auditory presentation (SOA = 4 sec)
 - 250 scans per subject, block design
 - 2 conditions
 - Words, e.g. "book"
 - Words spoken backwards, e.g. "koob"
- Subjects:
 - >12 controls
 - ➤ 11 blind people

Example 1: Covariance components

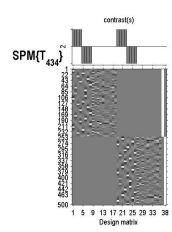
- Two-sample t-test:
 - Errors are independent but not identical.
 - 2 covariance components



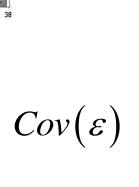


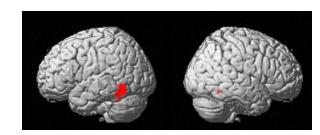
Example 1: Group differences

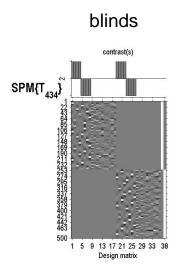
First Level

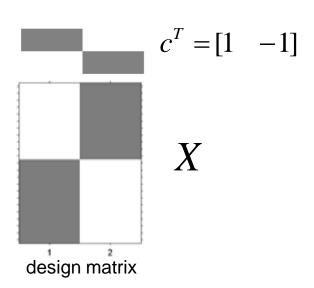


controls









Second Level

Example 2: within-subjects ANOVA

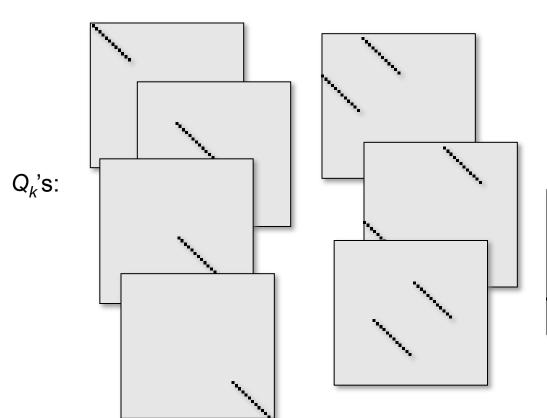
- Stimuli:
 - Auditory presentation (SOA = 4 sec)
 - 250 scans per subject, block design
 - Words:

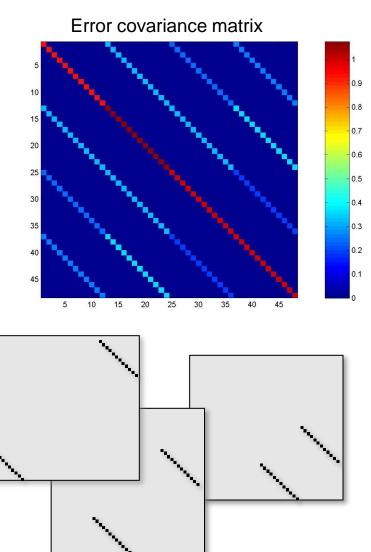
Motion	Sound	Visual	Action
"jump"	"click"	"pink"	"turn"

- Subjects:
 - > 12 controls
- Question:
 - What regions are generally affected by the semantic content of the words?

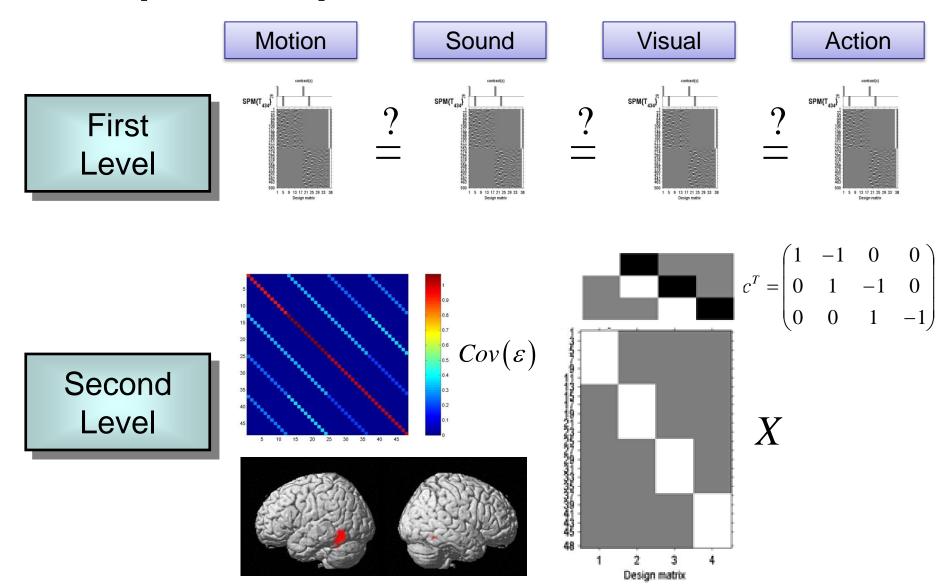
Example 2: Covariance components

☐ Errors are not independent and not identical

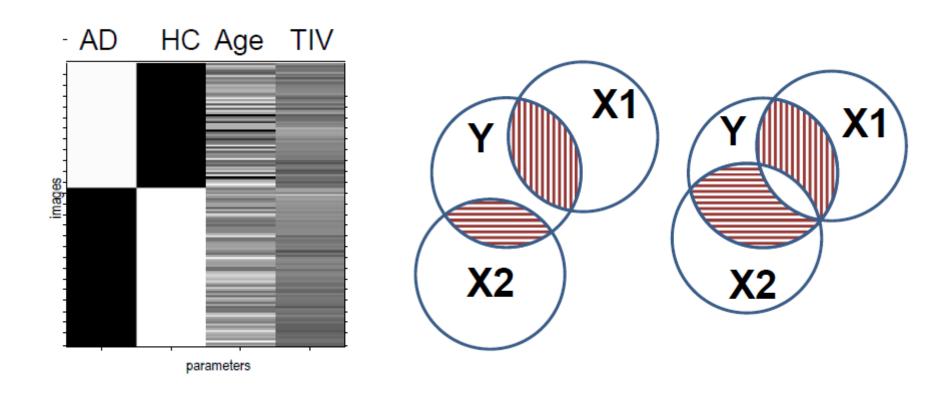




Example 2: Repeated measures ANOVA

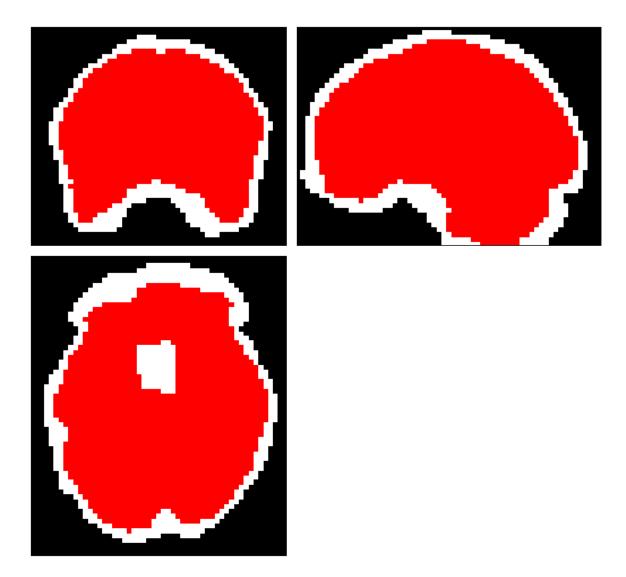


ANCOVA model



Mean centering continuous covariates for a group fMRI analysis, by J. Mumford: http://mumford.fmripower.org/mean_centering/

Analysis mask: logical AND



SPM interface: factorial design specification

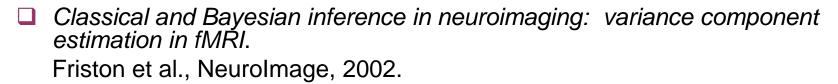
- Options:
 - One-sample t-test
 - Two-sample t-test
 - Paired t-test
 - Multiple regression
 - One-way ANOVA
 - One-way ANOVA within subject
 - Full factorial
 - Flexible factorial

Summary

- Group Inference usually proceeds with RFX analysis, not FFX. Group effects are compared to between rather than within subject variability.
- Hierarchical models provide a gold-standard for RFX analysis but are computationally intensive.
- Summary statistics approach is a robust method for RFX group analysis.
- Can also use 'ANOVA' or 'ANOVA within subject' at second level for inference about multiple experimental conditions or multiple groups.

Bibliography:

- □ Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.
- ☐ Generalisability, Random Effects & Population Inference. Holmes & Friston, NeuroImage, 1998.
- Classical and Bayesian inference in neuroimaging: theory. Friston et al., Neurolmage, 2002.



- Mixed-effects and fMRI studies. Friston et al., Neurolmage, 2005.
- Simple group fMRI modeling and inference. Mumford & Nichols, Neurolmage, 2009.

