

Structural MRI

SPM course - 04/2014

Laboratoire de Recherche En Neuroimagerie (LREN)

Antoine Lutti - antoine.lutti@chuv.ch

Outline

- Principals of image encoding
 - Origin of the signal
 - Image encoding

- Anatomical imaging
 - Image contrast
 - Anatomical imaging requirements

Advanced anatomical acquisitions

Outline

- Principals of image encoding
 - Origin of the signal
 - Image encoding

- Anatomical imaging
 - Image contrast
 - Anatomical imaging requirements

Advanced anatomical acquisitions

Origin of the signal

Rotating magnet induces an electric current in the coil.

In MRI: - precessing magnetization M_o

- M_0 arises from the spins (\circlearrowleft) of hydrogen nuclei in water molecules

Macroscopic magnetization

s: spin of hydrogen nucleus in water molecules

No net magnetization

⇒ no signal detection

Net magnetization parallel to B₀

⇒signal detection possible

M₀: macroscopic magnetization

Hardware

Magnetic field **B**₀ created by superconducting magnet

B₀ is oriented along the main direction of the bore

The receive coil detects signal arising from the magnetization

RF excitation

At rest:

M₀ is: - along the *longitudinal* direction- parallel to the receive coilSignal cannot be detected

After RF excitation:

 $\mathbf{M_0}$ is: - in the transverse plane

- perpendicular to the receive coil

All MR sequences require RF excitation

Intermediate summary

Following RF excitation M_0 rotates about B_0 at :

$$\omega_0 = \gamma B_0$$

In a given B_0 :

- All hydrogen nuclei (protons) rotate at the same (Larmor) frequency
- No spatial information

How does image encoding work?!

Image encoding – frequency encoding

All singers (water molecules) have identical voices (rotate at the same frequency)

To obtain an image of the singers, we tune their voices according to their position along x i.e. we impose a gradient G in frequency along x:

Frequency encoding

Uniform **B**₀: - precession frequency is uniform

- no information about spatial

localization

To spatially encode an image, one uses *gradients* of magnetic field

Frequency encoding

Phase encoding

- After one readout, image is encoded along the x-direction only
- To get a 2D image, we need to use gradients along the y-direction. This is done by **phase encoding**

Phase encoding

Precession frequency depends on position along y:

After duration δ , y-dependent phase:

$$\omega = \omega_0 + G_v^* y$$

$$\Phi = \omega * \delta$$

2D Image encoding

Spatial encoding along y direction:

- Image acquisition repeated with multiple values of the phaseencode gradient
- # of phase-encode steps equals # of voxels along phase direction (e.g. y)

Dephasing and signal amplitude

Weak gradient

Strong gradient

2D Image encoding

Outline

- Principals of image encoding
 - Origin of the signal
 - Image encoding

- Anatomical imaging
 - Image contrast
 - Anatomical imaging requirements

Advanced anatomical acquisitions

Transverse relaxation

Following RF excitation, transverse component of M_0 decays exponentially with a time constant T_2

T₂ contrast

- T_{2,CSF}>T_{2,GM/WM} => On T₂-weighted images, CSF appears bright
- WM and GM have similar T₂ values => low WM/GM contrast in T₂-weighted images

Longitudinal relaxation

After RF excitation, longitudinal component of M_0 returns to equilibrium over a time constant T_1

Longitudinal relaxation

T1 relaxation during TR governs amount of magnetization available for next excitation

T1 contrast

T1 differences between brain tissues yield image contrast in anatomical imaging

PD contrast – long TR

- Long TR (~20s):
 - All tissues fully relax
 - → No T1w contrast
 - Image contrast: water density
 - → PDw contrast
- Inconveniences:
 - Very time consuming
 - Fairly poor GM/WM contrast

T1 contrast - short TR

Optimal GM/WM contrast

Generally preferred for anatomical imaging

TR<<T1

Frahm J. et al. MRM 1986

T1 contrast – short TR

Anatomical imaging - requirements

Yield optimal signal-to-noise/contrast-to-noise

- Preserve brain morphology
- Minimize acquisition time
- Avoid signal losses

Anatomical imaging – requirements

t

Readout time << T2 to preserve brain morphology

• TE<<T2 minimize signal dropouts

fMRI lecture
Distortions in EPI
images

fMRI lecture
Signal losses in EPI
datasets

Anatomical imaging – requirements

3D image encoding for maximum SNR

RF

- Signal from entire head volume

- 3rd direction ('partition') is gradient-encoded.

- $N_{partition}xN_{phase}$ sequence repetitions

!! Image quality sensitive to artefacts during the entire duration of the scan!!

Anatomical imaging – image contrast

- Magnetization preparation enhance image contrast
- Manipulation magnetization prior to excitation/readout

Anatomical imaging – image contrast

Example: inversion recovery

Anatomical imaging – image contrast

FLASH Frahm J. et al. MRM 1986

- Inversion Recovery (time consuming)
- MPRAGE
 Mugler & Brookeman MRM 1990; Mugler &
 Brookeman JMRI 1991; Look D.C., Locker D.R.,
 Rev. Sci. Instrum, 1970;

MDEFT

Deichmann R. et al Neuroimage 2006

Magnetization transfer (off-resonance saturation)

Henkelman R. MRM 1993; Sled J. & Pike G. MRM 2001; Helms G et al 2008

Outline

- Principals of image encoding
 - Origin of the signal
 - Image encoding

- Anatomical imaging
 - Image contrast
 - Anatomical imaging requirements

Advanced anatomical acquisitions

Bias in anatomical imaging

Spatially-varying bias:

- Transmit field B1 used for RF excitation
- Receive field for signal detection

Receive bias

- Receive head coils have spatially varying sensitivities.
- Effect corrected by bias field of SPM 's unified segmentation.

Original image

Bias field corrected image

T1 contrast - short TR

Transmit bias

Transmit bias

- Nominal flip angle α_{nom} (e.g. 90°)
- Local flip angles are:

B1 inhomogeneities:

- Affect image contrast
- Cannot be corrected by SPM bias-field correction
- Must be accurately mapped for correction

Lutti A. et al MRM 2010, Lutti A. et al PONE 2012;

Morphometry – limits of T1w imaging

Contrast bias affect segmentation results

Standard T1w image

Bias-free image

Ashburner& Friston Neuroimage 2000; Hutton Neuroimage 2008; Hutton Neuroimage 2009

Bias-free anatomical imaging - quantitative mapping

- Bias-free measures of MR parameters of tissues
- Measures are biomarkers of tissue microarchitecture (concentration of myelin, iron, water,...)
- Data quantitatively comparable across scanners
- Reduced variance across multiple scans & imaging centres
 Improved sensitivity in longitudinal and multi-centre studies

Helms G., et al MRM 2008; Helms G., et al MRM 2009; Marques J.P. et al Neuroimage, 2010; Deoni, S.C., JMRI 2007; Glasser M.F., Van Essen D.C., J. Neur, 2011 Weiskopf N. et al Front. Neurosci 2013; Lutti A. et al Neuroimage 2013

MRI biomarkers of tissue microstructure

R2* vs iron concentration

Yao B. et al. NI 2009

R1 vs myelin concentration

Rooney W.D. et al MRM 2007

MPM protocol for quantitative mapping

~35min (800um³ resolution)

Helms G., et al MRM 2008; Helms G., et al MRM 2009; Lutti A. et al MRM 2010, Lutti A. et al PONE 2012;

Improved morphometry: MT based VBM

MT > MDEFT

VBQ: fingerprint of tissue changes in ageing

Myelin mapping: towards in-vivo histology

Sereno M.I. et al., Cereb. Cortex 2012

References

- MRI- From picture to proton
 by D.W. McRobbie, E.A. Moore, M.J. Graves, M.R. Prince
- Magnetic Resonance Imaging
 by E. M. Haacke, R. W. Brown, M. R. Thompson and R. Venkatesan
- Principles of Nuclear Magnetism by A. Abragam