data

CHclim25 | Swiss Eco-Climatic GIS data | Example dataset for MigClim.genClust | Bioclim variables for Southern South America | Ecospat data on Dryad | Ecospat data on GitHub
 

CHclim25

Climatic dataset for Switzerland downscaled from MeteoSwiss gridded data at 1km to 25m using local regressions. It provides up-to-date climatic data at a resolution of 25m for Switzerland that are compatible with the 5th assessment report of the IPCC (AR5; reference period 1981-2010). The dataset is derived from daily MeteoSwiss Grid-Data Products at 1km resolution for 1981-2017 (daily mean/max/min temperatures (TaveD/TminD/TmaxD), daily sum of precipitation (PrecD ), daily relative sunshine duration (SrelD)), and monthly potential incoming solar radiations (Srad) calculated at 25m for Switzerland by WSL. Transient daily time series of gridded climate scenarios of temperature and precipitations between 1981-2099 at 0.02°D (~2.2 km) from the CH2018 initiative used to calculate future climatic layers for 3 GCMs (HADGEM, ECEARTH, MPIESM, and IPSL), 3 time slices (2020-2049, 2045-2074, and 2070-2099) and 2 representative concentration pathways (RCP 4.5 and 8.5).

Available upon request at olivier.broennimann@unil.ch

Technical report:

Broennimann, O. (2018). CHclim25: A high spatial and temporal resolution climate dataset for Switzerland. Technical report. Ecospat laboratory, University of Lausanne, Switzerland. Available at www.unil.ch/ecospat/files/live/sites/ecospat/files/shared/PDF_site/chclim25.pdf

chclim25.pdf  (1021 Ko)

TOP ^

Swiss Eco-Climatic GIS data

This pdf shows the different eco-climatic GIS layers available for Switzerland. Information is provided about the methods used for the creation of the layers as well as their interdependances and correlations.

CHpreds2.pdf  (24442 Ko)

TOP ^

Example dataset for MigClim.genClust

This dataset is to be used with the MigClim.genClust function implemented in the MigClim R package

MigClim_Example.zip  (201 Ko)

TOP ^

Bioclim variables for Southern South America

19 bioclimatic variables based on Nix 1985, derived from a dataset of monthly climatic variables (1950-2000, 1 km spatial resolution) created with Anusplin software (Hutchinson 2006). More details on the methods here.

Suggested citation: Pliscoff, P., Luebert, F., Hilger, H. H., & Guisan, A. (2014). Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecological Modelling, 288, 166–177

Download zip files: 

Bioclim variables: 1-7 8-14 15-19

Monthly temperature mean: 1-6 7-12

Monthly temperature min: 1-6 7-12

Monthly temperature max: 1-6 7-12

Monthly precipitation: 1-12

TOP ^

Ecospat data on Dryad

  • Scherrer D, Esperon-Rodriguez M, Beaumont L, Barradas, VL, Guisan, A (2021). Data from: National assessments of species vulnerability to climate change strongly depend on selected data sources. Dryad Digital Repository:  doi.org/10.5061/dryad.qnk98sfg5
  • D'Amen M, Mod HK, Gotelli NJ, Guisan A (2017). Data from: Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Dryad Digital Repository: doi.org/10.5061/dryad.8mv11
  • Dubuis, A., Pottier, J. & Guisan, A. (2017). Data from:Improving spatial predictions of taxonomic, functional and phylogenetic diversity. Dryad Digital Repository. dx.doi.org/10.5061/dryad.cn921
  • Pottier J, Malenovský Z, Psomas A, Homolová L, Schaepman ME, Choler P, Thuiller W, Guisan A, Zimmermann NE (2014) Data from: Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy. Biology Letters dx.doi.org/10.5061/dryad.n13hn  
  • Carvalho SB, Gonçalves J, Guisan A, Honrado J (2015) Data from: Systematic site selection for multispecies monitoring networks. Journal of Applied Ecology dx.doi.org/10.5061/dryad.qt3c9  
  • Ndiribe C, Pellissier L, Antonelli S, Dubuis A, Pottier J, Vittoz P, Guisan A, Salamin N (2013) Data from: Phylogenetic plant community structure along elevation is lineage specific. Ecology and Evolution dx.doi.org/10.5061/dryad.q0fh6734  
  • Bidegaray-Batista L, Sánchez-Garcia A, Santulli G, Maiorano L, Guisan A, Vogler A, Arnedo M (2016) Data from: Imprints of multiple glacial refugia in the Pyrenees revealed by phylogeography and palaeodistribution modelling of an endemic spider. Molecular Ecology dx.doi.org/10.5061/dryad.k3v8j  
  • Henry P, Le Lay G, Goudet J, Guisan A, Jahodova S, Besnard G (2009) Data from: Reduced genetic diversity, increased isolation and multiple introductions of invasive giant hogweed in the western Swiss Alps. Molecular Ecology dx.doi.org/10.5061/dryad.1237  
  • Pellissier L, Niculita-Hirzel H, Dubuis A, Pagni M, Guex N, Ndiribe C, Salamin N, Xennarios I, Goudet J, Sanders IR, Guisan A (2014) Data from: Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps. Molecular Ecology dx.doi.org/10.5061/dryad.88fm3  
  • Guisan A, Dubuis A, Vittoz P (2011) Data from: Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions dx.doi.org/10.5061/dryad.28d4k

 

Ecospat data on GitHub

  • Broennimann O, et la. (2021). Data from: Distance to native climatic niche margins explains establishment success of alien mammals. GitHub Repository:  github.com/ecospat/NMI


  •  
Follow us:  
Biophore - CH-1015 Lausanne
Switzerland
Tel. +41 21 692 41 60
Fax +41 21 692 41 65